
Flattening Queries over Nested Data Types

Joeri van Ruth

Samenstelling van de promotiecommissie:

prof. dr. P.M.G. Apers, promotor

dr. M.M. Fokkinga, assistent promotor
dr. ir. M. van Keulen, referent

prof. dr. H. Brinksma
prof. dr. P. Hartel
prof. dr. T. Grust (TU München)
prof. dr. M.L. Kersten (UvA)

Centre for Telematics and Information Technology
(CTIT)
P.O. Box 217, 7500 AE Enschede, The Netherlands

SIKS Dissertation Series No. 2006-11
The research reported in this thesis has been carried out
under the auspices of SIKS, the Dutch Graduate School
for Information and Knowledge Systems.

ISBN: 90-9020723-6
ISSN: 1381-3617 (CTIT Ph.D. Thesis Series no. 06-86)

Cover design: Nienke Valkhoff

Print: PrintPartners Ipskamp, Enschede, The Netherlands

Copyright c© 2006, Joeri van Ruth, Amsterdam, The Netherlands

FLATTENING QUERIES

OVER

NESTED DATA TYPES

PROEFSCHRIFT

ter verkrijging van

de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,

Prof. dr. W.H.M. Zijm,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op vrijdag 2 juni om 15.00 uur

door

Joeri van Ruth

geboren op 7 maart 1974

te Amsterdam

Dit proefschrift is goedgekeurd door

Prof.dr. P.M.G. Apers, promotor.

DANKWOORD

Graag wil ik iedereen bedanken die direct of indirect aan het voltooien van
dit proefschrift heeft bijgedragen. Allereerst had ik me geen betere begeleiders
kunnen wensen dan Maarten en Maurice. Met hun totaal verschillende blik op
de materie vulden ze elkaar perfect aan. Ik ben dankbaar voor alle aandacht en
energie die ik gekregen heb, zonder hun steun had ik het nooit gehaald. Ondanks
zijn volle agenda is mijn professor, Peter Apers, er altijd geweest als ik hem nodig
had. Mijn gesprekken met hem hebben me erg geholpen de big picture in het
oog te houden, zowel wetenschappelijk als wat betreft het promotietraject.

Ik heb het in de DB-groep enorm naar mijn zin gehad. In het bijzonder
wil ik Sandra en Suze bedanken, samen het hart van DBIS, en alle AIO’s van
het informele DB AIO-seminarium, de Almost Weekend Meetings. En natuur-
lijk mijn kamergenoot Ander, voor het prettige gezelschap, het helpen met het
vinden van denkfouten op whiteboards en alle hulp bij het regelen van UT-zaken
toen ik zelf alweer in Amsterdam woonde. Rick van Rein ging al bijna weg toen
ik bij de DB-groep kwam. Gelukkig was ik er nog op tijd bij, en zijn we goede
vrienden geworden. Zonder Rick had ik een stuk minder fijne tijd gehad in
Twente.

In mijn familie wil ik graag mijn ouders bedanken, die altijd voor me klaar
stonden. En mijn oma van Ruth, ook voor haar bijdrage aan het feest. Verder
ben ik buitengewoon trots dat Cornelis en Pieter Tol, mijn opa en mijn oom,
tijdens de promotieplechtigheid mijn paranimfen zullen zijn. Zij hebben samen
aan het begin gestaan van de weg die me uiteindelijk naar dit proefschrift leidde.

Het meest wil ik Nienke bedanken. Zonder haar had ik het nooit gered. Mijn
promotie is op veel manieren ten koste van haar gegaan, omdat ik door de week
in Twente woonde, en omdat het allemaal steeds maar niet af kwam. Ik ben
haar enorm dankbaar dat ze dit met me heeft willen doorstaan en dat ze me al
die tijd zo gesteund heeft. Ik kijk uit naar de tijd dat we onze promoties achter
de rug hebben en weer aan ons leven samen toe kunnen komen.

v

vi

Contents

1 Introduction 1
1.1 Goal . 2
1.2 Approach . 3
1.3 Dodo and the Multi-model DBMS 8

2 Function-based data model 15
2.1 Dodo . 15
2.2 Nested data model and sublanguage 17

2.2.1 Types . 18
2.2.2 Query language . 21

2.3 Flat data model and sublanguage 24
2.4 Flattening data . 26
2.5 Flattening queries . 29

2.5.1 Point-free form . 32
2.5.2 Translation to point-free form 34
2.5.3 Handling nested scopes 37
2.5.4 Further translation . 40

2.6 Extension writer obligations . 41
2.7 Summary . 43

3 Realization 45
3.1 Basic column operators . 46
3.2 Key representation . 48
3.3 Data type definitions . 52
3.4 The Dodo type system . 60
3.5 The prototype . 66
3.6 Summary . 67

vii

4 Pathfinder 69
4.1 Pathfinder in a nutshell . 70
4.2 Pathfinder extension to Dodo . 77

4.2.1 The seq〈〉 frame . 78
4.2.2 The xmlnode〈〉 frame . 82

4.3 Conclusion . 87

5 Categorical background 89
5.1 Algebras, monads and comprehensions 89
5.2 Monads and monad comprehensions 96
5.3 Application in Dodo . 99

6 Inductively defined types 103
6.1 Inductively defined types and catamorphisms 104
6.2 Frame representation for fixpoint types 105
6.3 Rewrite rule for the initial algebra 110
6.4 Implementing catamorphisms by iteration 112
6.5 Implementing iteration in the column layer 118
6.6 Summary . 122

7 Summary and future work 125

Bibliography 131

Samenvatting 137

SIKS Dissertation Series 141

viii

Chapter 1

Introduction

The translation of queries from complex data models to simpler data models
is a recurring theme in the construction of efficient data management systems.
We propose a general framework to guide the translation from data models with
nested types to a flat relational model (query flattening). In this framework,
the query is first rewritten into a point-free form. The point-free form is a good
starting point for converting nested operations into machine friendly relational
bulk operations at the flattened level.

1 Recurring theme. Flattened representations of nested data types are
a recurring theme in database research. For instance, Geographical (GIS) ap-
plications often involve geometrical structures such as points, lines and poly-
gons. In the MAGNUM project [BWK98] it has been demonstrated that for
certain query workloads, decomposition onto a relational back end extended
with suitable primitive operations may yield significant performance improve-
ments [BQK96]. A more general example are object oriented databases (OO-
DBMS) such as O2 [BDK92, Clu98], where, for performance, object naviga-
tion is implemented using join algorithms. More recently, XML databases have
emerged, which to a varying degree use XML as their data model. Again, imple-
mentations turn to flat storage representations for performance. For instance,
the Pathfinder [PTS+05] XQuery engine uses a flat representation of the doc-
ument structure and implements FLWOR1 expressions [PTM+05] and XPath
traversals [GvKT04] as joins. Finally we note that the non-first-normal-form
(NF2) research of the late eighties also struggled with this problem.

The common pattern is that data management systems which need to sup-
port more high-level nested data structures turn to relation, or at least flat,

1for-let-where-order-by-return

1

2 CHAPTER 1. INTRODUCTION

storage to obtain performance. Usually, this involves the use of join-operations.
Sometimes these are the “classic” joins provided by every commercial rela-
tional DBMS, sometimes specific join operators are added. See Mayer, Grust et
al. [MGvKT04] for an example of a join algorithm integrated into the Post-
greSQL query engine to improve performance on tree retrieval, and Steen-
hagen [SABdB94] for more general work on nestjoins, join algorithms for nested
data models. Altogether, there is reason enough to study the phenomenon of
query flattening in isolation.

1.1 Goal

2 Query flattening. Query flattening is the process of rewriting a query
from a data model with complex, possibly nested data types to a data model
with only simpler, non-nested types. The most important example of the latter
is of course the relational model in first normal form. The need for query
flattening arises in two contexts. Sometimes it is desirable to access existing
relational data through a complexly structured view (e.g., an object-oriented
or XML-based view) that presents a more convenient data model. Any queries
posed to the view have to be translated to queries over the data as it is actually
stored.

The other reason is performance. If the storage layout is too similar to
the logical organization of the data, complex queries often suffer disappointing
performance. This is due to several factors, most notably the unpredictable
access patterns caused by excessive object navigation (pointer chasing). As
general-purpose hardware becomes more and more dependent on caching, the
penalty for random memory access keeps growing [BK99]. It also seems that
complex data models tend to encourage item-at-a-time thinking as opposed to
the set-at-a-time operations facilitated by the relational model. Expressing the
query in terms of whole sets rather than individual items gives the optimizer
much more leeway in choosing an appropriate query plan.

3 The Multi-model DBMS Dodo. In non-traditional application do-
mains, such as multimedia retrieval and GIS, such performance problems are
known to frequently occur, as are extensibility problems. A multi-model data
management architecture has been shown to be effective in solving both kinds
of problems [dV99]. A multi-model data management architecture allows an
application-oriented (nested) data model at the upper layer and a machine-
oriented (flat) data model in the bottom layer. The system can be extended
at each layer independently, and typically extensions at a given layer can reuse
functionality provided in the layers below. This facilitates cross-extension opti-
mization.

1.2. APPROACH 3

We explore the issue of query flattening in the context of a system called
Dodo. Dodo [vR05] is a continuation of the Moa system, which served as an
early prototype of the multi-model DBMS. Dodo shares with its ancestor the
translation from application-oriented to machine oriented query algebras and
the capability to extend the system at every appropriate layer.

Extensions in current systems are often restricted to defining a byte repre-
sentation of a new data type, plus the signatures of a collection of operators
on this type. In Dodo, and the multi-model architecture in general, extensions
have full access to all facilities provided by the system and the other extensions.
This allows extensions to be defined at a higher level of abstraction: the stor-
age structure of our new types is defined in bulk form using binary relations as
the fundamental building block, rather than a byte representation of individual
values. This makes it easier to re-use existing algorithms implemented by the
database kernel and allows the optimizer to understand the building blocks used
by the new extension. Van Keulen et al [vKVdV+03] label this approach an
open implementation approach rather than a black box approach.

4 Problem statement. Establish a systematic mapping from queries over
extensible nested data models to queries based on bulk operations on a flat data
model, allowing cross-extension optimization.

1.2 Approach

5 Research strategy. We look at category theory for inspiration. The
categorical point of view is interesting because on the one hand, there exists a
well developed categorical theory of data types. On the other hand, due to the
way they are expressed, categorical proofs are already in bulk form (point-free).
We focus on analytical query processing, where the query workload is dominated
by large, computationally intensive queries. Hence, we focus on query processing
and ignore updates.

In this thesis, we propose a framework for flattening queries over nested data
types. It employs a point-free intermediate form both as a means of introducing
bulk operations and as a convenient platform for structural optimizations. We
hope that this general framework can serve as an aid to understanding and
designing query flattening strategies.

We validate our approach by examining specific examples of query flattening
in the XML domain and showing how the patterns made explicit in our frame-
work are already present there. At the same time, we hope to convince the
reader that point-free reasoning indeed simplifies the construction of a correct
and consistent query flattening system when compared to developing it in an
ad-hoc fashion.

4 CHAPTER 1. INTRODUCTION

6 Data vs. query flattening. First, we introduce some more terminology
around the concept of query flattening. The general pattern of query flattening
is illustrated in the following diagram:

N
q // N

F (N)

OO

F(q) // F (N)

OO (1.1)

Here, N represents the domain of complexly structured (“Nested”) data and q
represents a query on the nested data. A query is a function that takes the data
in the database and transforms it into a return value. As such, it is a mapping
from N to N . Under water, the data is stored in a flattened form F (N).
The basic idea is to derive a flattened version F (q) of the original query q in
such a way that evaluating F (q) against flattened data and then unflattening is
equivalent to evaluating q naively at the nested level.

A flattening strategy F has two components. The schema flattening F (N)
expresses how to decompose complex types at the nested level into simple types
at the flattened level. It might, e.g., implement a set-valued attribute using
auxiliary relations. The query flattening F (q) brings the query from the nested
to the flattened level. In the case of set-valued attributes, it generates the
extra join operations needed to connect the elements of the attribute with
their containing object. Notice that we denote both the data- and the query
components with the letter F because they are so interrelated. One cannot be
designed without having the other in mind.

Notice the direction of the arrow in diagram (1.1). Although F (N) is the
flattened representation of N , the arrow is drawn the other way around. The
reason is that the arrows denote the flow of information. At query time, the
data already resides in the database in flattened form. The diagram shows the
property the query flattening F (q) must satisfy. For any query q , executing
F (q) and then assembling the flat result into a nested return value should give
the same result as first assembling the database back into nested form, and then
executing q in its original form.

7 Data flattening. Our proposed query flattening strategy boils down
to the following. In this paragraph, we consider flattened representations for
collections of items from the nested layer. In the next paragraph, we consider
how operations on nested values are translated to operations on the flattened
data representation.

At the flat level, we have several primitive types plus one composite type,

1.2. APPROACH 5

the binary relation.2 At the nested level, an extension defines a new type X by
specifying how to represent a function α → X using these binary relations. In
other words, extensions do not specify how to represent a single element of X ,
they specify how to represent a collection of X es, each identified by a unique
key of type α. Example: a collection of dog names identified by numeric dog
identifiers is represented as

atom〈 dognames
1 fido
7 spot
9 rex

〉.

Here, dognames is a binary relation from the flat level, which is wrapped in a
so-called atom-frame. The name atom is chosen to suggest that atom-frames
serve as wrappers for primitive values. The frame above stands for, and is often
identified with, the mapping {1 7→ fido, 7 7→ spot , 9 7→ rex}.

Notice how the binary relation dognames has been wrapped in a atom〈〉
structure. This is called a frame. As an example of a more complex frame,
consider the type BagX of bags (multisets) containing values of type X . We
represent a collection of type α→ BagX using the bag-frame

bag〈d , r ,F 〉

where F is a frame of type β → X and r is a binary relation between the element
identifiers β and the bag identifiers α. The first component, d , is an explicit
representation of α. It is needed for some rewrite steps. With

d
100 100

, r
100 1
100 7
100 9

, F = atom〈 dognames
1 fido
7 spot
9 rex

〉,

the frame bag〈d , r ,F 〉 represents, and is often identified with, the function {100 7→
{|fido, spot , rex |}}.

8 Query flattening. In the previous paragraph, we saw that extensions
define a new type X by giving a frame representation for a function α →
X . Such a frame represents many X -items at the same time. Similarly, the
definition of operations on X is given by specifying how to perform them on
many items at the same time. The function semantics of the frames are the key

2For reasons outlined in paragraph 33, we base our system on a binary relational model.

This is not a fundamental property of our design; the binary model simply fits our needs well.

6 CHAPTER 1. INTRODUCTION

to how this is organized. Every operation is defined by giving a rewrite rule
for the functional composition of the operation with a frame. As an example,
consider the pair type X × Y . Functions α → X × Y are constructed using
a pair -frame pair〈F ,G〉 with F : α → X and G : α → Y . Conceptually, the
projection function exl : X×Y → X is defined at the level of a single pair (a, b):

exl (a, b) = a.

In terms of frames, however, it is defined by the rule

exl ◦ pair〈F ,G〉 = F .

Interpreted as a function, the frame pair〈F ,G〉 takes a key a ∈ α and maps
it to a pair (F (a),G(a)) ∈ X × Y . Function exl : X × Y → X then maps
(F (a),G(a)) to F (a), thus showing that the rewrite rule is correct:

(exl ◦ pair〈F ,G〉)(a) = exl(pair〈F ,G〉(a))

= exl((F (a),G(a)))

= F (a).

9 Point-free form. In the previous paragraph we introduced the func-
tion exl . It is most conveniently defined by the equation

exl (x , y) = x .

This is called a point-wise definition because the terms of the equation refer
to individual elements. The left-hand side refers to exl being applied to a
single pair. The second definition in paragraph 8 is given as an equation of
functions. Here, the left-hand term of the equation has type α → X . Because
this definition does not refer to individual elements but only to properties of
functions, we call this a point-free definition of exl . The immediate benefit of a
point-free definition is that it is stated in bulk terms. Hence, it is an excellent
starting point for translating the query to bulk operations at the lower level.

It turns out that for many operations on many types, a point-free rewrite
rule is easy to state. Sometimes the rewrite rule involves no actual processing of
data. As with exl , it just rearranges the frame structure. In other cases, rewrite
rules replace nested operators by flat operators. For instance, the operator

unnest : BagBagX → BagX

introduces a relational join between the r -component of the outer bag-frame
and the r -component of the inner bag-frame:

unnest ◦ bag〈d1, r1, bag〈d2, r2,F 〉〉 = bag〈d1, r1 ∗ r2,F 〉.

1.2. APPROACH 7

10 Exploiting categorical knowledge. One of the reasons we cite Cate-
gory Theory as an inspiration is that category theory is based entirely around
the notion of reasoning about mathematical objects in a point-free fashion. In
the transformational programming community, a lot of work has been done on
exploiting categorical knowledge during program transformation. We mention
in particular the notion of catamorphisms, which are programs (query opera-
tors) that compute their result by induction to the shape of their argument.
One well-known example is the sum function on lists, often defined (in Haskell
notation) as

sum [] = 0

sum (n:ns) = n + sum ns

Various theorems are known which allow to fuse and otherwise manipulate func-
tions which follow this pattern. One difference between our framework and pre-
ceding systems is that in our system, data types which seem to have a recursive
structure at the nested level, are in fact implemented in a flat way. Therefore,
recursive functions such as the above cannot be implemented directly. We look
at various ways to deal with this problem. Ideally, we try to use the efficient ver-
sions of these functions defined at the frame level, if they exist. Otherwise, we
attempt to translate the catamorphism into a fix point equation at the relational
level.

11 Query language. The exact details of the query language may dif-
fer depending on the nature of the system implementing the point-free query
flattening strategy. Typically it will be a functional language. In principle,
the incoming expression is completely translated before execution begins at the
lower level, and the flattened query we generate can only depend on properties
of the query, not on the data in the database. This means that our language
does not support recursion. Instead, queries use higher-order functions defined
at the frame level. One example of a common higher-order function usually
defined by recursion is the map operator on lists, bags, and sets. Point-wise, it
looks like map f {|x , y , z |} = {|f x , f y , f z |}. At the frame level, such a function
can elegantly be defined as follows:

map f ◦ bag〈d , r ,F 〉 = bag〈d , r , f ◦ F 〉.

Another beneficial concept brought by the categorical influence is the monad .
It allows us to define a comprehension syntax in a simple way:

Bag [f x | x ← e] := map (λx • f x)e,

Bag [e | x ← e ′, y ← e ′′] :=

8 CHAPTER 1. INTRODUCTION

unnest Bag [Bag [e | y ← e ′′] | x ← e ′],

. . .

where (λx • e) is a lambda term mapping x to e. In contrast to most literature
and programming languages, a comprehension has to have a name, like Bag
above and Sum below, which indicates the monad. A fragment [|] without the
name has no meaning. For details, see paragraph 129.

Extensions can easily add new comprehension types, such as a

Sum[x | x ← E] =
∑

x∈E

x

comprehension by defining some appropriate functions, see also paragraph 30.
Comprehension syntax is a useful tool for expressing queries. We shall later see
how several aspects of query flattening in other systems can be mapped to the
flattening of comprehensions in Dodo.

12 Applications in the XML domain. The pattern made explicit in
our framework can be observed in systems in the real world. For instance, in
Chapter 4 we show how the design of the Pathfinder XQuery engine can be
fitted into the framework very neatly. A Pathfinder extension can be defined
by introducing flattened type definitions for the fundamental XML data struc-
tures. Furthermore, specific algorithms to accelerate XPath axis steps can be
implemented as a low-level extension, whereby its application is nicely hidden
in the operations defined on the new types. Pathfinder’s approach for efficiently
handling nested FLWOR expressions maps almost directly to our framework.

1.3 Dodo and the Multi-model DBMS

In this section we take a closer look at the Multi-model DBMS architecture
mentioned in paragraph 3, in particular how Dodo implements and contributes
to it. The multi-model database architecture is advocated by de Vries [dV99]
and others [vKVdV+03, dVLB03] as a way to deal with the tension between
data model expressiveness and extensibility on the one hand and efficiency and
optimization on the other.

As discussed in paragraph 1, in order to make database technology more suit-
able for non-traditional applications such as multi-media and semi-structured
data, a more expressive data model than the one usually provided by current
DBMS vendors is desirable. At the same time, efficiency is expected from such
a DBMS supporting a more expressive data model.

1.3. DODO AND THE MULTI-MODEL DBMS 9

It should be noted that by “more expressive,” we mean expressive in the
sense of what can conveniently be expressed in it. The relational model in itself
is of course perfectly able to express any data structure one might conceivably
wish to put into a database. We do, however, want to make it more convenient
for applications to properly put complex data structures into a database man-
agement system and avoid the common situation where they are maintained in
a separate system next to, rather than within a DBMS.

13 Tension. The tension arises when we try to implement more expressive
data models efficiently. We observe two issues. First, as mentioned in para-
graph 2, current trends in hardware strongly favour simple data structures over
complex ones. In order to perform well on modern hardware, data needs to be
arranged in a simple, cache-friendly way with predictable access patterns and
little inter-datum dependency. Otherwise, computation becomes latency bound
and performance suffers.

The other, more fundamental issue is that of data independence, a more well-
known tension between expressiveness and optimizability. More complex data
models are harder to understand for query optimizers than simple data models.
In this respect, the relational model is a local optimum, because

• it is simple, and based on a sound mathematical foundation, set theory;

• due to this foundation, it is able to express any structure we require of it;

• it is simple enough for automated query optimizers to get a grip on;

• it is abstract enough to allow several very different implementations of
both storage structure and algorithms, thus giving the optimizer some-
thing to choose between;

• the theory of normal forms makes it easier to design a data representation
which is not tied too close to the first application using the data, making
it more likely to be useful for later applications as well.

All in all, the relational model truely is one of great achievements of computer
science in the last 50 years. The goal of the multi-model architecture is to allow
more expressive data models, but carry over the data independence benefits of
the relational model.

14 Data independence. Data independence is the corner stone of classical
relational database theory, but curiously overlooked by most newcomers with
extended data models. The ANSI/SPARC architecture [TK78] separates the
DBMS in three layers, the external, conceptual and internal layer. Three layers
means two interfaces, and thus two opportunities for decoupling:

10 CHAPTER 1. INTRODUCTION

Module

meta interface
kkkkkkk

uu
meta-

program

_ _ _ _Â

Â

Â

Â
_ _ _ _

client interface

¥¥
¥¥

¥¥
¥¥

££

client
program

_ _ _ _ _Â
Â
Â

Â
Â
Â

_ _ _ _ _

Figure 1.1: Open implementation approach.

• Physical data independence means that the storage structure of data can
be changed without changing the conceptual structure. The main benefit
of this is that performance-inspired changes to the storage structure do
not affect the conceptual schema.

• Logical data independence means that the conceptual structure can be
changed without changing the external schemas presented to existing ap-
plications. We stress the importance of the plural “schemas”: one of
the purposes of the conceptual schema is to define a common world view
which can be mapped to several application-specific external schemas spe-
cialized for specific applications. This makes it easier to adapt data of one
application for use by other (possibly future) applications.

It is interesting to notice how nowadays, physical data independence is taken
so much for granted that it is often overlooked, whereas logical data indepen-
dence remains underused. Here, we focus on the importance of physical data
independence for performance, in particular query optimization.

Physical data independence is not a database-only concept. There are more
layers hiding physical issues. Below the database we find file systems, RAID
and volume managers, and disk-internal block remappings. Each hides storage
level complexity from higher layers. These abstractions have grown over time.
For instance, one of the reasons that the classical relational model papers of
the 70s [Cod70, CAB+81] put so much emphasis on abstracting away from file
storage details is that at the time, files were often only thin abstractions over
consecutive ranges of disk addresses (think of disk-number/cylinder/head/sector
tuples), rather than the convenient hierarchical name spaces we have nowadays.
Similarly, one can argue that application programmers nowadays think of re-
lational databases as “physical storage” in the sense that the interface to the
DBMS is where one stops thinking about storage details.

15 Data independence and optimization. A downside of layering, or
modularity in general, is that not every implementation issue can and should

1.3. DODO AND THE MULTI-MODEL DBMS 11

be hidden behind an abstract interface. There is a tension between software
engineering benefits favouring hiding and execution performance requiring in-
sight in and influence on implementation details in lower layers. Referring to
Kiczales [KB96], De Vries cites the Open Implementation approach as an impor-
tant guideline for handling this tension followed in the multi-model architecture.
In the open implementation approach, there is still abstraction, but instead of
treating a layer or module as a black box, it provides a meta-interface (see Fig-
ure 1.1) allowing a client of the layer or module to make certain performance
choices. A common example is the Unix call madvise(2), which is used to ad-
vise the kernel about the expected access patterns for a memory region, allowing
the kernel to choose an appropriate paging strategy.

16 Extensibility and optimization. To embrace non-traditional applica-
tion domains, a DBMS need not only support a more expressive data model,
it needs to be extensible with new data types as well. For performance, it
is important that an optimizer gets a grip on the new structures. Many ap-
proaches to this problem have been tried, with varying success. We mention
Garlic [CHS+95] and Predator [Ses98]. Garlic integrates heterogeneous data
sources using Object Wrappers. Wrappers may provide statistics to Garlics op-
timizer. Even then, processing queries outside the underlying database may
lead to performance loss [dVEK98].

Predator features E-ADTs, Enhanced Abstract Data Types. The Enhance-
ment in an E-ADT lies primarily in the optimizer interface the E-ADT provides
to the Predator framework. This allows extensions to add knowledge to the op-
timizer, and to a limited extent, to perform cross-extension optimization. This
is a form of meta-interface in terms of the open implementation approach.

The E-ADT approach is limited by the fact that every E-ADT manages
its own data within a common storage manager, Shore. For instance, cross-
extension pipelining is not possible. Moreover, because every E-ADT is built
directly on top of the storage manager, it is hard to re-use functionality imple-
mented within another E-ADT.

17 Multi-model architecture. In summary of the preceding paragraphs,
we note that databases with enriched data models may benefit from data in-
dependence in ways similar to what purely relational databases typically pro-
vide, and from better inter-extension interaction. The Multi-model DBMS ar-
chitecture [dV99, vKVdV+03] is an attempt to provide this. Recall that the
ANSI/SPARC model defined three layers with two interfaces. Commonly, all
layers implement the relational model, but this is not required by ANSI/SPARC.
The multi-model architecture proposes to use different data models for each
layer. The nature of non-traditional applications requires from the conceptual
layer to support complex, usually nested types.

12 CHAPTER 1. INTRODUCTION

Generalizing from the properties of the relational model mentioned in para-
graph 13, the interface between layers needs to be chosen in such a way that the
language is simple enough for the optimizer to grasp, with clear algebraic prop-
erties for the optimizer to exploit. Hence, for the logical and physical layers be-
low it, simpler data models are better. The physical layer should typically use a
machine-friendly relational model. De Vries [dV99] and van Keulen [vKVdV+03]
suggest to use a variant of XNF2, Extended Non-First Normal Form, for the
logical layer.

The multi-model architecture addresses the concerns mentioned in the pre-
ceding paragraphs in the following way. With regard to extensibility and cross-
extension interaction, notice that in the multi-model architecture, the system
is extensible at every layer. Usually, an extension defining new data types and
operations at the conceptual layer also brings a couple of support operations
at lower layers. At the same time, however, it has access to all existing func-
tionality at the lower layers. In particular, there is no need to reimplement
various join algorithms already provided by other extensions. Recall that in the
E-ADT approach described above, there was the possibility for an extension to
add knowledge to the optimizer, but at the end of the road every extension had
to implement its functionality itself, directly on top of the storage manager.
In the multi-model approach, an extension at the conceptual layer can borrow
logical and physical operations from other extensions, and only implement those
physical operators not provided by others.

Data independence is improved because every layer, or more precisely, ev-
ery interface between layers provides an opportunity for abstraction. Usually
many physical implementations are possible for one conceptual type or opera-
tion. A meta-interface is provided by allowing an extension to define its own
optimization rules, in particular ones that recognize possibilities to make use of
related special-purpose operations implemented as extensions in a lower layer.
Furthermore, as mentioned earlier, it is important for performance, that it is
possible to map application-oriented object-at-a-time operation definitions to
efficient bulk operations at the physical level. Therefore, the interface needs to
expose its functionality with a suitable unit of work. If the application presents
the database only with microsteps, as often happens in purely Object Oriented
systems, there is nothing for the optimizer to optimize. The theory in this thesis
is intended to help programmers design the mapping of conceptual operations
to efficient bulk operations at the physical level in a controlled and verifyable
way.

18 Multi-model related research. The roots of the multi-model archi-
tecture lie in the Magnum-project [BWK98, BQK96]. Magnum was a struc-
turally object-oriented DBMS intended to efficiently integrate spatial and the-

1.3. DODO AND THE MULTI-MODEL DBMS 13

matic data for GIS purposes. Magnum used MonetDB as its physical layer.
MonetDB [BK99] is an efficient and extensible main-memory database kernel
designed with the cache hierarchy of modern CPUs in mind [Bon02]. In our
context, an important feature of MonetDB is its binary relational data model,
where every relation (BAT, binary association table) is either unary or binary.

On top of MonetDB, Magnum featured Moa, the Magnum Object Algebra.
Moa allows one to add new data types by describing their decomposition into
BATs, and to use newly added operators both at the nested Moa level and the
flat Monet level. Moa made heavy use of the concept of an IVS, an Indexed
Value Set. Basically, if an extension added a new data type, it would give two
structural definitions. One, the Value definition, expressed how a single value
of the new type was decomposed into flattened values, and the other, the IVS
definition, expressed how a collection of values was flattened. By choosing a
suitable IVS representation for data types, it was possible to construct bulk
versions of operators which were considerably more efficient than repeated ap-
plication of the Value version of the operator. This allowed Magnum to perform
well on, for example, the Sequoia benchmark [Sto93].

In follow-up projects, Moa was adapted to other applications. The Mirror
project [dVvDBA99, dV99] addressed content-based multimedia retrieval for
text, images and music. In the AMIS project [BdVBA01, BHC+01], the focus
was on mapping top-N information retrieval queries to parallel evaluation over
fragmented data, demonstrating the performance benefits of data independence.
Finally, in the SUMMER project, Moa was modified to function as a common
middleware federating Monet- and SQL-based databases and an XML/XQuery-
based conceptual data model with multimedia retrieval extensions.

Dodo’s frames described in paragraph 7 were inspired by Moa’s notion of
IVS. Cast in the category theoretical language of objects and arrows, we express
an IVS as an arrow from keys to values. In this way, value operations become
function applications and IVS operations can be written as function composi-
tions. Because the value representation can be regarded as a special case of the
IVS representation where the domain consists of a single key, Dodo needs only
to deal with data in IVS form. Writing queries in point-free form, where the
query is fully written as the composition of functions, provides a natural way
to move the query to bulk orientation.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Function-based data model

In the previous chapter we sketched the trade-off between expressiveness of the
data model and the performance of query evaluation over that data model.
The problem is that implementing complex data structures in a straightforward
fashion ties the storage structure too tightly to the logical structure of the data.
This makes it hard for the query engine to derive efficient execution plans, since
efficient execution requires bulk processing. In this chapter we describe our
approach and make it concrete using Dodo, a prototype system.

The purpose of the current chapter is to explain how the simple mathematical
concept of point-free reasoning can be used to guide the extension programmer
in designing a flattened representation of complex data structures and especially
operations. Our slogan is

Replace function application by function composition!

2.1 Dodo

We describe our approach to query flattening in the context of our prototype,
Dodo [RFK04]. Dodo is a translation service that sits between the application
and the underlying (relational) database. It provides a simple language capable
of expressing the queries both as seen at the logical layer and as seen at the
storage layer. At the logical layer, the query is stated in terms in terms of
complex, nested data types, and often in an item-at-a-time fashion. The query
then is gradually transformed into a form where processing takes place using
bulk operations from the storage layer.

15

16 CHAPTER 2. FUNCTION-BASED DATA MODEL

19 One language. Why do we stress that Dodo provides one language?
Why not two, one for the complex data and one for the flattened data? It is, after
all, fairly common to define two languages and a “semantic bracket

[[
· · ·

]]
” to

separate them during translation. If, for instance, the first language is arithmetic
expressions written in infix style (x + y), and the second language arithmetic in
prefix style (+ x y), then rewrite rules can be defined similar to

[[
x + y

]]
= +

[[
x
]] [[

y
]]
.

This is a natural and tidy approach, but with Dodo, the situation is more
complicated. In our setting, the data is stored in flattened form, but the query
result is to be presented in nested form. Therefore, regardless of the query plan,
at some point a complex value has to be assembled out of flattened parts. Query
flattening in Dodo merely changes where this happens. If a query is stated using
complex operations, the query plan first assembles flattened data into a complex
value, and then the operation can be performed. After translation, the query
plan first performs flattened operations and then assembles the result into a
complex value. The underlying assumption is that for computation-intensive
queries, the latter approach is more efficient.

Dodo combines all these elements in one language. If we were to split it into
a complex language and a flattened language, the question is: where do we put
the reassembly sublanguage? The whole point of splitting into two languages
is that we can start with an expression completely in one language and finish
with an expression completely in the other, and the reassembly step breaks this
symmetry, wherever we put it.

20 Roles. It is helpful to distinguish the following, possibly overlapping
roles. Users formulate queries. They think in terms of complex data struc-
tures and formulate queries over them. Extension writers define extensions in
terms of a mapping from these complex data structures to flattened storage.
They understand the semantics of both the complex and flattened layer very
well, because they also need to provide a mapping from complex operations to
corresponding flattened operations. Database administrators use the mapping
established by the extension writers to construct a user-friendly nested view
on the existing relational data at hand in a specific case. Essentially, the ex-
tension writer looks at the mapping of new data types, whereas the database
administrator looks at the mapping of concrete data.

21 Intended use. Dodo is intended to be used for analytical queries over
complex data structures, that is, queries which touch a lot of data and are often
computation intensive.

2.2. NESTED DATA MODEL AND SUBLANGUAGE 17

It is possible to use Dodo without extending the system. In that case, the
data is represented using the tuples, sets, lists and bags provided by the core
system. The database administrator stores data in relational form and creates
a “data dictionary” which assembles the relations into frames which present the
user with bags of lists of tuples, or whatever is convenient for the application
at hand. Notice that it is possible to provide several Dodo views of the same
relational data.

Providing this nested view may be useful in itself, but is not the primary
motivation behind the Dodo approach. The point of Dodo is to allow a pro-
grammer, the extension writer, to extend Dodo with new data types which are
internally implemented using bulk operations. For example, the extension writer
may define an application-specific data structure such as a document representa-
tion for Information Retrieval [dV99], or geometric structures for geographical
applications. For instance, the extension writer may define a docrep〈〉 frame
(structure mapping) which specifies how to map a collection of documents onto
a couple of relations in the underlying database. Using the framework presented
in this chapter as a guide, the extension writer maps interesting operations on
document representations to relational operations. Most of these are classical
relational operators such as selections and joins, but interesting applications
will also involve custom operations written in C and linked into the database
kernel.

While the extension writer defines the mapping at the type level, the database
administrator role (DBA) is concerned with actual data. Given docrep〈〉 frames
as defined above, the DBA may decide that this specific application calls for two
document collections, and thus two instances of the docrep〈〉 structure. Frames
are built on relations in the underlying database, so the DBA also has to de-
cide to which relations the instances map, how data is to be loaded into them,
etcetera.

2.2 Nested data model and sublanguage

In this section we describe the upper part of diagram (1.1).

N
q // N

F (N)

OO

F(q) // F (N)

OO (1.1)

We give a description of the kind of complex data model (N) we use in Dodo
and the query language it presents to the user. The parts of the query language

18 CHAPTER 2. FUNCTION-BASED DATA MODEL

related to the flattened layer are deferred to later sections. The type system for
nested data developed in this chapter is based on a categorical notion of data
types, similar to [Gru99] and [Fok92]. In general, the emphasis is more on the
structure of functions between data types than the data types themselves.

2.2.1 Types

The type system is centered around the notion of a type former. Type formers
construct a type (a set, basically). Some type formers take other types as
parameters (List A), while others do not (Strings, or numbers).

22 Simple types. Simple types are String, Integer and other things that
can be stored directly in the data model of the lower layer. These types are
atomic in the sense that they have no visible internal type structure, as far as
the type system in N is concerned. Generally, simple types map directly to
scalar types provided by the underlying database.

• Unit type. The unit type 1 = {†} contains precisely one value, written †.
This data type can be stored very efficiently because it requires zero bytes
of storage.

• Primitive types. Primitive types are defined by the underlying system. In
this report we assume Int , Str and Bool , sometimes written Z, SS and B.
The if then else construct requires the boolean type. We often use the
letters K , L and M to refer to primitive types, including the unit type.

• Key types. Key types are opaque values used to identify other things.
They play an important role in the flattened layer and at most a minor role
in the nested layer. Essentially, when a collection of Dodo values is stored
as a table in the flattened layer, the primary key of that table is represented
using a key type. Key types are not precisely atomic, sometimes several
keys are combined into product keys or sum keys. We will get back to that
in section 2.3. We will often use the greek letters α, β, γ, . . . to refer to
key types.

23 Sum and product types. Sum and product types are two com-
mon ways of combining Dodo types. Product types are cartesian products; the
product type A × B denotes pairs (or more generally, tuples). Sum types are
disjoint unions. The sum type A + B denotes values that are either of type A
or of type B . So, informally, elements of A×B contain an A and a B , whereas
elements of the disjoint union A + B contain either an A or a B . Notice that
for finite sets A and B containing n and m elements, respectively, the product

2.2. NESTED DATA MODEL AND SUBLANGUAGE 19

E

k

||yy
yy

yy
yy

yy
`

""EEEEEEEEE

kM`

²²
A

f

²²

A× B

f×g

²²

exloo exr // B

g

²²
C C ×D

exloo exr // D

A
inl //

f

²²

A + B

f +g

²²

B
inroo

g

²²
C

inl //

h
""EEEEEEEEE C + D

hOj

²²

D
inroo

j
||yyyyyyyyy

F

Figure 2.1: A summary of functions related to sum- and product types, given
as a graph with types as nodes and maps as edges. A path through the graph
is a concatenation of edges and corresponds to a composition of maps. This
is a commutative diagram, which means that the existence of multiple paths
between a given pair of nodes implies equality of the maps corresponding to
those paths. For instance, among the equalities implied this way by the above
diagrams are exl ◦ (k M `) = k and exl ◦ (f × g) = f ◦ exl .

type A×B has n×m elements, whereas the sum type A+B has n+m elements.
More formally,

• An element of a product type A×B is a pair (a, b) with a ∈ A and b ∈ B .
The functions exl : A× B → A and exr : A× B → B are used to retrieve
the left- and right-hand parts. The notation × is extended from types to
functions: for f : A→ C and g : B → D we define f × g : A×B → C ×D
by

(f × g) (a, b) = (f a, g b).

Products can be constructed using the M construct. For every k : E → A
and ` : E → B we define k M ` : E → A× B by

(k M `) e = (k e, ` e).

The relationship between these functions is summarized in the left part of
figure 2.1. The formula k M ` is generally pronounced “k con `”.

• Sum types. An element of a sum type A + B is either a left-handed or
a right-handed value. Left-handed values are drawn from type A, right-
handed are drawn from type B . Left- and right-handed values are created
using inl : A→ A+B and inr : B → A+B , respectively. Given f : A→ C
and g : B → D , the function f +g : A+B → C+D applies f if it encounters
a left-handed argument and g if encounters a right-handed argument. For
h : C → F and j : D → F , the function h O j : C + D → F applies h

20 CHAPTER 2. FUNCTION-BASED DATA MODEL

or j as appropriate, but returns the resulting F value without a left- or
right-handed orientation. Again see figure 2.1 for a pictorial presentation
of the relationship between these functions. The formula h O j is generally
pronounced “h dis j .”

24 Function types. Function types X → Y denote mappings from one
type to another. A function of type X → Y assigns to every element of X an
element of Y . We often write type letters A and B for types which are known
not to be function types. For instance, the type Z → B is an instance of the
general type pattern A→ B , whereas Z→ (Z→ B) is not.

Functions can be composed. Function composition means two or more func-
tions are applied after each other. The function obtained by applying f after g
is written f ◦ g , e.g.,

(f ◦ g) x = f (g x).

25 Functors. Functors build types out of other types. In fact, × and +
are functor instances, but were treated specially for clarity.

• Functors. Types can be lifted to other types using functors. For example,
the List functor transforms a type A into the type ListA of lists over that
type. At the same time, List transforms any function f : A → B into a
new function Listf : ListA→ ListB that applies f to every item in the list:

List f [1, 2, 3] = [f 1, f 2, f 3].

A functor has two defining characteristics: it lifts the identity function of
a type to the identity function of the new type

List id [1, 2, 3] = [id 1, id 2, id 3] = [1, 2, 3] (2.1)

and it distributes over composition

(List f ◦ List g) [1, 2, 3] = List f (List g [1, 2, 3]) = List f [g 1, g 2, g 3]
= [(f ◦ g) 1, (f ◦ g) 2, (f ◦ g) 3]
= List (f ◦ g) [1, 2, 3].

(2.2)
Defining new functors is a common way of extending Dodo. In the case
of container types like F = List, the function F f is defined as applying f
to the items of the list.

• Bifunctors. It is possible to have functors that take more than one type
as an argument. Such functors are called bifunctors. The type formers

2.2. NESTED DATA MODEL AND SUBLANGUAGE 21

+ and × for product- and sum types are examples of such bifunctors.
Figure 2.1 illustrates their operation as function combinators. Proving the
generalized functor properties idA× idB = idA×B and (f × f ′) ◦ (g × g ′) =
(f ◦ g)× (f ′ ◦ g ′) using the equations from that diagram is left as a useful
exercise for the reader.

2.2.2 Query language

In this section we describe the Dodo query language, or, to be more precise,
the nested part of the query language. It serves as an example of a query
language dealing with complex types. Usually, the query language of a given
system can be mapped onto something similar to the language described in this
chapter. Minor differences do not matter much; we shall see in section 2.5 that
what matters is that queries can eventually be rewritten into a composition of
primitive operations.

26 Example. From the users point of view (as opposed to the extension
writers view), Dodo implements a typed λ-calculus, extended with comprehen-
sion syntax. For instance, given a bag of numbers b (predefined by the database
administrator), the following query computes the bag of squares of those num-
bers:

Bag (λn : Z • n2) b.

Here, Bag is the bag-functor. Recall from paragraph 25 that functors are used
both to form new types and to lift existing functions to those types. In this
example, b has type BagZ and Bag (λn : Z • n2) has type BagZ → BagZ

because the λ-term (λn : Z • n2) has type Z → Z. The λ-term denotes the
function which, given an argument n, computes its square n2. An alternative
notation for the above query would be

Bag [n2 | n ← b].

This is a Bag-comprehension. The first part, Bag , signifies the kind of value
we are about to construct. The n2 calculates the values to be put into the
construction process, and after the |, there are zero or more generators which
generate bindings for n. Comprehensions can be used to construct collections
such as bags, but also to invoke aggregate functions. For instance, we could
write Sum[n2 | n ← b] to calculate the sum of the squares of the numbers in
the bag. Extension writers can easily define new kinds of comprehensions; it is
simply a matter of defining a few functions with certain required properties.

22 CHAPTER 2. FUNCTION-BASED DATA MODEL

27 Expressive power. Dodo implements a typed λ-calculus without a
Y -operator or similar. This means that it cannot directly express recursive
functions. The reason for the lack of recursion is that Dodo itself does not eval-
uate the queries, but it translates them to a relation query plan, and relational
algebras typically do not support recursion. See, however, Chapter 6 for a sketch
of how to deal with a specific type of recursion in Dodo. The query transla-
tion mechanism described in the current chapter can only deal with first-order
λ-terms. By disallowing recursion, all higher-order λ-terms can be expanded as
a preprocessing stage.

In a database context, the lack of recursion is not as much of a problem as
it would seem on first sight. Most uses of recursion involve traversing a data
structure and doing some processing along the way, and extension writers can
endow their new data types with suitable higher-order functions to do so.

28 Language. In the following paragraphs we give a grammar and informal
semantics for the Dodo query language. The formal semantics is expressed as
rewrite rules in Section 2.5. The current section defines the grammar of the high-
level, lambda like part dealing with complex data structures. In section 2.3 we
define the part of the language dealing with flattened data. In sections 2.4 we
introduce frames, the bridge between the two layers. The syntactical constructs
are grouped according to the type of value they denote. Later, this will make
it easier to verify the completeness of the rewrite rules.

Conceptually, everything in the following paragraphs can be regarded as part
of a huge context free grammar starting with e ::=. It is tempting to attempt
to put more syntactical structure in it by putting, say, the frame constructs in
their own kind of nonterminal. This looks nice, but it makes the mixed trees
that occur during the rewrite process very hard to describe. Therefore, we just
call everything an expression and use the type system to impose more structure
on it.

29 Simple value building constructs. The following syntactical con-
structs can be used to construct simple values, i.e., values of a type A, not
X → Y .

k : K literal

let x = e in e ′ : A abbrev. for (λx • e ′) e if e ′
x :=e : A

(e, e ′) : A× B pair formation if e : A and e ′ : B

if b then e1 else e2 : A conditional if b : B and e1 : A

and e2 : A

2.2. NESTED DATA MODEL AND SUBLANGUAGE 23

30 Monad comprehensions. Monad comprehensions allow the user to
write expressions such as

List [(x , y) | x ← xs, y ← ys].

For the definition of a monad, see paragraph 130. For the moment, it is sufficient
to know that the system associates the comprehension type M to a functor T

and a so-called algebra τM . The functor encodes the type corresponding to
the comprehension, for instance, the Bag comprehension is associated to the
functor Bag because given values of type A, it constructs values of type Bag A.
Likewise, the Sum comprehension is associated to the identity functor Id because
given numbers of type N , it calculates a result also of type N = Id N .

M [e |] : TA monad-comprehension if e : A

M [e | x ← e ′] : TB monad-comprehension if ex :A : B and e ′ : T′A

and (|τ → τM |) well-defined

with τ init. algebra for T′

M [e | b] : TA monad-comprehension if e : A and b : B

M [e | q , qs] : TA monad-comprehension if M [M [e | qs] | q] : TTA.

See paragraph 127 for an explanation of the sentence “(|τ → τM |) well-defined
with τ init. algebra for T′”. Informally, the idea is that it must be possible to
convert values from type T′ to T using only information from T′. For instance,
implicit conversion from lists to bags is OK, because it simply drops information
about the ordering of elements. Conversion from bags to lists is not OK, because
the conversion needs to make up the order in which the elements are put in the
list. Because there are multiple choices there, such a conversion must be done
explicitly, perhaps using a function sort .

Extension writers define the semantics of a monad comprehension M [. . . |
. . .] by associating M with functions zeroM , denoting an empty collection or
aggregation, unitM denoting a singleton, and unnestM , which removes a degree
of nesting. For more details, see the actual translation rules in figure 2.3, and
Chapter 5.

31 Potentially complex function builders. By “potentially complex” we
mean that the following constructs may have function types other than A→ B .
The constructs themselves are easy to understand.

x : X identifier defined in schema or environment

f e : Y function application if f : X → Y and e : X

f ◦ g : X1 → X3 function composition if f : X2 → X3 and g : X1 → X2

24 CHAPTER 2. FUNCTION-BASED DATA MODEL

32 Simple function builders. We call the following construct simple
because they always have first-order function type A→ B .

λx • e : A→ B lambda term if ex :A : B

(|α→ β|) : A→ B catamorphism if α : FA→ A initial , β : FB → B

const v : A→ B constant function A arbitrary, v : B

often written v

Lambda terms are well-known. The banana brackets (|·|) were already re-
ferred to in paragraph 30; their precise meaning is explained in paragraph 122.
Constant functions are a useful tool in many circumstances. They are syntactic
sugar for a lambda term: v = const v = (λx • v).

2.3 Flat data model and sublanguage

In this section we briefly describe the lower part of diagram (1.1).

N
q // N

F (N)

OO

F(q) // F (N)

OO (1.1)

In the flat data model, we have the same primitive native types as in the nested
layer, such as integers and strings. One might say that it is the other way
around: the primitive types of the nested layer are those types which are in
fact already defined in the flat layer. There is only one composite type, the
relation. There is a set of operators to work on scalar values and relations.
This “column algebra” includes all regular relational operations, such as joins,
as well as some specialized operations for internal use by Dodo. The column
algebra is a very simple language. There are no variable bindings, explicit
loops or other language constructs. As far as Dodo is concerned, there are just
column values and operators that combine them into other column values. In
section 2.5 we describe how operations from the nested layer are translated to
column expressions.

33 Binary model. We choose binary relations for, among others, the
following reasons:

• Every n-ary relation can be decomposed into n binary relations. The
binary relational model is in a sense the simplest, most Spartan version of
the relational model.

2.3. FLAT DATA MODEL AND SUBLANGUAGE 25

• Existing research has shown [BK99] that the binary relational model per-
forms well on analytical query workloads.

• Our approach revolves around functions, and functions are a special case of
binary relations. In the flat layer, the binary relations are always between
scalar types. The frame construct described in section 2.4 generalizes this
to nested types.

Because of the binary model, we need no column labels and other complica-
tions. Every relation has a head-column and a tail-column. For every column
operator it is implicitly defined on which side of the column it operates. For
instance, the plus operator on relations always adds together the tails of its two
arguments.

Every scalar operation (e.g., plus) is expected to be provided in two vari-
ations. One scalar variant, working on a single primitive value, and one vec-
torized variant which works on all values in a given column. For more detailed
information about the column algebra, see our technical report [RFK04].

34 Column types. Columns are sets of pairs, each consisting of a head and
a tail element of primitive type. All heads have the same type, and so do the
tails. The type of a column consists of its head- and tail type, together with
flags that indicate

• that the head (tail) elements are all distinct; head distinctness is known
as “functional”; tail distinctness is known as “injective”;

• that they are complete, i.e., that every meaningful value in the domain is
present as a head (tail);

• that every head is equal to its tail.

A column with head type K and tail type L is denoted [K −L]. Partial functions,
i.e., columns where all heads are distinct, are written [K →L]. Likewise, columns
with distinct tails are written [K ←L], and head-complete and tail-complete
columns are written [K 7−L] and [K −7 L], respectively. The arrow ornaments
can be combined, allowing us to write [K 7→L] for total functions from K to L.
Finally, the fact that all tails are known to be equal to the corresponding heads
can be indicated by replacing the tail type with an exclamation mark: the
column idunit = {(†, †)} has type [1 7↔7 !].

Important It is important to keep in mind that the arrow in a type α → A
represents a total function, whereas the arrow → in a column type [α→β]
represents a partial functions. We have chosen to use a systematic notation for
column properties, but use the conventional function notation elsewhere.

26 CHAPTER 2. FUNCTION-BASED DATA MODEL

35 Column expressions. Column expressions denote primitive values
but most often columns. They occur only within frames expressions, see para-
graph 38.

k : K literal

x : [α−β] column name

op(c1, . . . , cn) : X prefix operator if Cop(X , t1, . . . , tn) holds

and c1 : t1, . . . , cn : tn

c ∗ c′ : [α− γ] semijoin if c : [α−β] and c ′ : [β− γ]

note property propagation

rules below

c ∪ c′ : [α−β] column union if c, c′ : [α−β]

Literals are used in column expressions such as settail(some col , 3). The semi-
join operator preserves the column attributes: if both arguments are head-
complete, then so is their semijoin. The same holds for tail-complete, tail-
distinct and, very importantly head-distinct. The union operator t preserves
head-uniqueness if it exists, which is essential when combining, e.g. bag domains.

Prefix operations op have a type predicate Cop that gives the relation between
permitted argument types and return type, including the properties described
in paragraph 34. This is used to implement property propagation for column
operators. For instance, the predicate Ctwin for the operator twin(r) = {|(x , x) |
(x , y) ∈ r |} states that if r is head-complete, twin(r) is both head-complete and
tail-complete, because twin duplicates every head into the tail.

2.4 Flattening data

Frame expressions are the bridge between the nested and the flat layer. They
express how to construct a collection of nested values out of scalars and relations
from the flat layer. Generally, there is a frame type for every data type. The
frame is interpreted as a collection of items of the given type, identified by
distinct keys. The details of the interpretation depend on the frame type and
are specified by the extension writer. In the examples in paragraph 7 we saw
that a collection of primitive values is represented as an atom〈〉 frame containing
a single binary relation between keys and values. To represent bags and lists, we
begin with a frame representation for the elements of the bags, and encapsulate
it in a bag〈〉 frame which uses a binary relation between bag-keys and element-
keys to group the elements together in bags. Details of the representation of
some specific data types can be found in chapter 3.

2.4. FLATTENING DATA 27

36 Interpretation function. The extension writer defines a new data
type by giving a frame representation for it. Syntactically, this is simply a type
signature for the components in the frame. Recall the bag〈〉 frame mentioned
already in paragraph 7. It has type signature

bag〈[α 7↔7 !], [α−β], β → A〉 : α→ Bag A.

Here, α is the type of bag-identifiers, β is the type of element-identifiers, and A
is the type of the elements themselves.

However, the most important job of the extension writer is to specify how
the new frame should be interpreted: given a frame foo〈a, b, c〉 of type α→ T ,
how does one look up the value corresponding to a given key? We refer to this
as the interpretation function for the frame. Interestingly, this interpretation
function is not usually implemented within Dodo itself: it simply expresses the
common understanding of the implementation of a given type between Dodo
and a client application, see paragraph 37.

The interpretation function of a frame is important for two reasons. First,
it is needed to prove the validity of rewrite rules within Dodo. Operations on
nested types are implemented in Dodo as rewrite rules on frames. To check the
validity of such a rule, the extension writer needs to show that the interpretation
of the rewritten frame is indeed the same as what one would obtain by applying
the operation to the interpretation of the original frame. In other words, the
obligation of the extension writer is to prove the commutativity of the following
diagram:

N
operation

// N

frame
rewrite//

interpretation

OO

frame ′

interpretation

OO

Second, the interpretation function is needed to interpret the end result of
the query. A query begins as a sequence of operations applied to one or more
frames containing the data. During rewriting, it is transformed into a frame
expression containing column operations. The column operations are handed
to the underlying relational database system and the result sets are pasted
back into the frame structure. The end result is a frame which gives a relation
between a singleton key and the nested value which is the answer to the query.
This frame then has to be interpreted in order to obtain the actual answer.

37 Dodo Result language. In our work on Dodo, we focus on what
happens until the point where a frame is constructed which represents the result
value. The final step is to bring this flattened representation of the result in a
more intuitive form:

{|(fido, 3), (spot, 1), (rex, 9)|}

28 CHAPTER 2. FUNCTION-BASED DATA MODEL

rather than

bag〈 m1

† †
, m2

† 1
† 7
† 8

, pair〈atom〈 m3

1 fido
7 spot
8 rex

〉, atom〈 m4

1 3
7 1
8 9

〉〉〉.

The interpretation function is a function of type Frame → Key → X . It takes
a frame and a key for which to retrieve the corresponding value. The form
of the result is given here as X and the question is: what is X ? There are
many possibilities. The interpretation might be a string. It might be an XML
document. It might be a Java object. From a theoretical point of view, the
exact form of the “Dodo Result Language” X is mostly an engineering issue.
Results have to be handed to the application in a suitable way. What matters
however, is that whatever result language has been chosen, it has been specified
with sufficient precision for defining unambiguous interpretation functions.

38 Frame expressions. Here we continue with the grammar of the Dodo
language started in section 2.2.2.

f 〈e1, . . . , en〉 : α→ A frame if e1 : t1, . . . , en : tn ,

each ti either αi → Ai or Xi ,

and Ff (α→ A, t1, . . . , tn)

empty : ∅ → A empty frame constructs empty frame f 〈〉

with f depending on type A.

F tG : (α1 ∪ α2)→ A frame union if F : α1 → A, G : α2 → A

and α1 ∩ α2 = ∅.

c ∗ F : α→ A frame translation if c : [α 7→β] and F : β → A

F ◦ atom〈c〉 : α→ A frame translation as above

dom F : [α 7↔7 !] frame domain if F : α→ A

The first line of the above table gives the syntax for frame expressions. Every
frame type f has a type predicate Ff which relates the type of its components
to the type of the whole frame. Every component should either be a column
expression (type Xi) or something translatable to a frame (type αi → Ai).
Recall, for example, the bag frame from paragraph 36. The predicate Fbag for
the bag frame reads

Fbag(t , t1, t2, t3) ⇐⇒ t = α→ A ∧ t1 = [α 7↔7 !] ∧ t2 = [α−β] ∧ t3 = β → A,

2.5. FLATTENING QUERIES 29

which we abbreviate to

bag〈[α 7↔7 !], [α−β], β → A〉 : α→ BagA.

The other items in the table are “frame valued expressions.” Extension writ-
ers defining a new frame type are required to give rewrite rules which turn such
expressions back into a frame. Semantically, a frame denotes a function whose
domain is a finite set of primitive values, usually keys. The frame valued ex-
pressions, which in the sequel we call “required column operations,” correspond
to certain canonical operations on functions when regarded as sets of ordered
pairs. For instance, the empty operator creates a new function { } = ∅, and the
t operator calculates the union of two frames F : α1 → X and G : α2 → X .
For this to be type safe, α1 and α2 have to be disjoint and they have to be
subsets of the same primitive type α.

• The empty frame operator empty a new frame f 〈. . .〉 : α → X , where α
and X are determined using type inference.

• The union operator F1tF2 constructs a new frame F such that F k = F1 k
if k ∈ domF1 and F k = F2 k if k ∈ domF2.

• The frame translation operator c∗F constructs the functional composition
of a frame and a binary relation. For the result to denote a function again,
c has to be functional, too. In formula, (k , v) ∈ (c ∗F) if and only if there
exists k ′ such that (k , k ′) ∈ c and (k ′, v) ∈ F .

• In Dodo, the frame representation for functions yielding primitive values
is usually atom〈c〉 : K → L, with c : [K 7→L]. In that case, c ∗F can also
be written F ◦ atom〈c〉.

• The domain operator dom F is used to obtain the domain α of a frame
F : α → A. The domain is delivered in the form of a binary identity
relation containing precisely the keys in the domain.

Many examples can be found in Chapter 3.

2.5 Flattening queries

In the previous section we saw how frames are used as a flattened representation
for nested data structures. Here we show how operations on nested data struc-
tures are translated to operations on flattened data. In particular, one frame
represents a multitude of items at the same time, and our goal is to preserve the

30 CHAPTER 2. FUNCTION-BASED DATA MODEL

d
† †

r
† 1
† 7
† 8

f
1 fido
7 spot
8 rex

g
1 2005
7 1998
8 2001

(λw • dogs) = dogs ′ = bag〈d , r , tuple〈atom〈f 〉, atom〈g〉〉〉

Figure 2.2: Example data. Recall that the key † is the single element of the
unit type 1 = {†}.

bulk nature of frames during the translation of nested operations. The trans-
lation takes place in two phases. In the first phase, the query is brought in
point-free form. In the second phase, the point-free representation is combined
with the frames containing the data, and the combination is gradually rewritten
into a frame representation of the query result. In section 2.5.1 we discuss the
point-free query form. In section 2.5.2 we give the rewrite rules which bring
Dodo queries in this point-free form. Most rules are trivial. The only non-
trivial rule, which deals with the elimination of nested scopes, is discussed in
section 2.5.3.

39 Example. To show how the functional data representation benefits
query rewriting, we systematically rewrite a simple example query. Consider
the following query, which computes the birth years of all dogs.

q = Bag [y | (x , y)← dogs] : Bag Dog .

In this query, the identifier dogs represents the collection of dogs as thought of
by the user, i.e., dogs : Bag(Dog × Z). Under water, however, Dodo works with
functions, so the database administrator has defined a frame dogs ′ using the
equation

(λw • dogs) = dogs ′ = bag〈d , r , tuple〈atom〈f 〉, atom〈g〉〉〉 (2.3)

with d , r , f and g as in figure 2.2. Hence, dogs as seen by the user is the value
of the constant function dogs ′ : 1 → Bag(Dog × Z) defined by the database
administrator.

Similarly, the query q is replaced by the constant function q ′ = (λw • q).
This is necessary because the end result is going to be the frame representation
of the query result. A frame representation is of function type. Therefore, if we
want to arrive at the query result using a series of rewrite steps, the query we
start out with also needs to have function type.

As an illustration of the Dodo rewrite process, here are the steps used to
flatten q ′.

2.5. FLATTENING QUERIES 31

λw • Bag [year | (name, year)← dogs]

(E1) = { syntactic sugar, exr : X ×Y → Y is projection function }

λw • Bag [exr z | z ← dogs]

(E2) = { definition Bag monad, paragraph 70 }

λw • Bag (λz • exr z) dogs

(E3) = { law: (λx • f x) = f , if x is not free in f }

λw • Bag exr dogs

(E4) = { law: (λx • f a) = f ◦ (λx • a), if x is not free in f }

Bag exr ◦ (λw • dogs)

(E5) = { Equation (2.3) }

Bag exr ◦ dogs ′

(E6) = { Again, Equation (2.3) }

Bag exr ◦ bag〈d , r , pair〈atom〈f 〉, atom〈g〉〉〉

(E7) = { definition of Bag functor, paragraph 70 }

bag〈d , r , exr ◦ pair〈atom〈f 〉, atom〈g〉〉〉

(E8) = { definition of exr }

bag〈d , r , atom〈g〉〉

(E9) = { interpretation of bag〈〉 frame, paragraph 70 }

† 7→ {|2005, 1998, 2001|}

In the above calculation, there are roughly two phases. The first five steps
are primarily concerned with breaking down elements of the query language into
simpler parts. This includes multiple binding, comprehension syntax and vari-
able names in general. In the second phase, constant functions such as dogs ′ are
replaced by their frame definition. Functions such as Bag and exr are defined
using a rewrite rule. Sometimes, the rewrite rule simply rearranges the query:
exr drops part of the pair〈〉 frame, and map inserts its argument in front of
the inner frame of the bag〈〉. Often, rewrite rules also introduce column opera-
tors. For instance, the translation of the operator unnest : BagBag X → Bag X
involves a relational semijoin r1 ∗ r2 between the relations r1 and r2, where r1
is the relation between outer bags and inner bags, and r2 the relation between
inner bags and elements X .

For the slightly less trivial query Sum[y | (x , y) ← dogs], the translation
would be very similar to the above, but finish with a step where Dodo uses the
built-in sum()-operator of the underlying database to calculate the sum of the
numbers in g . The link between the comprehension type Sum and the column

32 CHAPTER 2. FUNCTION-BASED DATA MODEL

operator sum() is given explicitly by the extension writer, see paragraph 73. No-
tice that using sum() avoids having to traverse the bag/tuple/atom-tree, which
would have been necessary if the data were stored in a nested way.

40 Roles (again). It is instructive to consider the previous example with the
roles defined in paragraph 20 in mind. Query q is posed by the user. Steps (E1)
up to (E4) are either well-known identities from lambda calculus or part of the
definition of the language. One might say that they are defined by the “language
designer” or the “compiler writer.” However, they make use of information
provided by the extension writer. For instance, the Bag comprehension type
has been declared by an extension writer to correspond to the Bag functor.
The definition of dogs used in steps (E5) and (E6) is provided by the database
administrator. The rewrite rule for the Bag functor and exr have again been
defined by the extension writer.

2.5.1 Point-free form

41 Point-free form. The first several steps of the calculation in para-
graph 39 bring the query in point-free form. By point-free, as opposed to point-
wise, we mean that the expression is completely written as a composition of
(higher-order) functions, without reference to individual elements or variable
bindings. For instance, of the equivalent equations

h(x) = f (g(x)),

h = f ◦ g ,

the first is point-wise, whereas the second is point-free. The expression in Par. 39
reaches point-free form after step (E5). In point-free form, all variable bindings
such as name, year , z and w have been eliminated, and function application is
only used for higher-order functions such as map.

The practical significance of the point-free form is that it is a first step
towards bulk operation. If we want to apply a function f : A → B to every
item in a frame F : α → A, then the natural way to write this is f ◦ F :
α → B . Consider the implementation of a data type. For simplicity, we focus
on pairs X × Y . In a system designed in a point-wise style, the pair type is
typically defined by stating that a pair is formed by somehow aggregating the
representation of the elements of the pair. Notationally, this is often done using
parentheses and comma, e.g.,

(a, b).

2.5. FLATTENING QUERIES 33

In terms of this representation, the projection function exr : X × Y → Y is
defined by the equation

exr (a, b) = b. (2.4)

The point-free definition of pairs is stated as an equation at the function
level rather than the element level. Notice that every function that produces
pairs can be split into a part f that produces the first component, and a part g
that produces the second. Recall from figure 2.1 the point-free definition of
pairs as a data type whose values are constructed using the combinator M and
deconstructed using two functions exl and exr satisfying

exl ◦ (f M g) = f ,

exr ◦ (f M g) = g .

This definition precisely captures the notion of a pair. This notion is shadowed
in the frame-definitions of the above functions, which read

F M G = pair〈F ,G〉
exl ◦ pair〈F ,G〉 = F
exr ◦ pair〈F ,G〉 = G

(2.5)

42 Benefit of the point-free representation. A minor benefit of the
point-free definition is that it is more abstract. It states the interface a pair
type must provide without prescribing a particular implementation. A more
important benefit is that it suggests a possible bulk implementation. In the
example, pairs are implemented using a pair〈〉 frame, where pair〈F ,G〉 has
type α→ X ×Y if F : α→ X and g : α→ Y . This is completely analogous to
the function combinator M. Furthermore, rewrite step (E8) essentially applies
the definition of exr given in equation 2.5. Notice again that this point-free
implementation of projection takes constant time, as it just rearranges the frame
structure without touching any data in the underlying database.

Point-free definitions describe what the composition of a function with an-
other function is, rather than what the result is when the function is applied
to a single argument. Therefore, if the newly defined function f is composed
with another function g , where ran(g) consists of a million elements, then the
point-free definition of f states how to apply f to a million elements at once.

Apart from the above mentioned two benefits, there is another aspect of
point-freeness that might be beneficial as well. In a point-free expression of an
algorithm the semantic constituents appear syntactically isolated as separate
sub-expressions (much more than is generally the case in a point-wise expres-
sion). This is beneficial for algebraic manipulations: decomposing an expression
in its semantic constituents and then recombining the parts in a different (but

34 CHAPTER 2. FUNCTION-BASED DATA MODEL

equivalent) way. Transformational Programming exploits this aspect (as shown
by Bird in his seminal work [Bir87] and his very advanced elaboration [BM96]);
and we hope later on to exploit this possibility for automatic optimization.

43 Definition (Point-free form for Dodo). We call an identifier pre-
defined if it is defined using a rewrite rule. For instance, dogs and dogs ′ from
paragraph 39 have been predefined by the database administrator using equa-
tion (2.3), while exr and the Bag functor have been predefined by an extension
writer. A Dodo expression is said to be in point-free form if it has first-order
type A→ B for and it is either

• a frame with all subexpressions either a column expression or also in point-
free form,

• a predefined function, e.g., exr ,

• a constant function (λx • v) = const v with v predefined, e.g., v = dogs,
or a primitive literal k .

• the composition of point-free Dodo expressions, e.g., exl ◦ exr ,

• or a predefined higher-order function operating on point-free Dodo expres-
sions, e.g. Bag exr , or f + g .

Notice that expressions in point-free form no longer contain variables.

2.5.2 Translation to point-free form

In figure 2.3 we show how Dodo queries are translated to point-free form. We
use the bracket notation

[[
E
]]

to denote the point-free form of E . The rewrite
rules are grouped according to the paragraph in Section 2.2.2 they originate in.
Notice that the case

[[
λy • f e

]]
with y occuring free in f is dealt with specially

in section 2.5.3.

44 Assumed functions. The rewrite rules assume the existence of various
predefined functions, such as bool2sum : B → 1 + 1, ∆ : A → A × A and
∇ : A + A → A. Definitions for those can be found in Chapter 3. Every
comprehension type M requires a functor T = TM and monad functions unitM :
A→ TA, unnestM : TTA→ TA and optionally zeroM : X → TA.

Moreover, the rewrite rules refer to a catamorphism (conversion function)
(|τT′ → τM |). Again, we refer to paragraph 122 for a precise explanation, but
informally, τT′ refers to the way the expression (T′ (λx • e) xs) constructs a
value of type T′A, while τM refers to how the return value should be constructed

2.5. FLATTENING QUERIES 35

[[
f
]]

= f { if f predefined }
[[
f e

]]
= f

[[
e
]]

{ f higher-order due to type}
[[
f ◦ g

]]
=

[[
f
]]
◦
[[
g
]]

[[
λy • k

]]
= const k { k literal or a predefined frame }

[[
λy • let x = e in e ′

]]
=

[[
λy • e ′

x :=e

]]

[[
λy • (e, e ′)

]]
=

[[
λy • e

]]
×

[[
λy • e ′

]]
◦∆

[[
λy • if b then e1 else e2 fi

]]
=

[[
λy •

(
∇ ◦ ((λ • e1) + (λ • e2))

)
(bool2sum b)

]]

[[
λy • y

]]
= id

[[
λy • f e

]]
= f ◦

[[
λy • e

]]
{ if no y in f }

[[
λy • f e

]]
= { see section 2.5.3 if y occurs free in f }

[[
λy • (f ◦ g) e

]]
=

[[
λy • f (g e)

]]

[[
λy • M [e |]

]]
=

[[
λy • unitM e

]]

[[
λy • M [e | x ← e ′]

]]
=

[[
λy • (|τT′ → τM |)

(
T′ (λx • e) xs

)]]

[[
λy • M [e | b]

]]
=

[[
λy • M [e | ←

if b then unitM † else zeroM † fi]
]]

[[
λy • M [e | qs, qs ′]

]]
=

[[
unnestMM [M [e | qs ′] | qs]

]]

[[
(|α→ β|)

]]
= (|α→ β|)

[[
const v

]]
=

[[
λ • v

]]

Figure 2.3: Rewrite rules for translating Dodo expressions to point-free form.

according to comprehension type M . For example, if b is a bag, then Sum[x |
x ← b] is replaced by

(|τBag → τSum |)(Bag (λx • x) b).

In words, (Bag (λx • x) b) = b means “construct a bag out of the elements of
b,” τBag means “construct a bag”, τSum means “add”, and therefore the whole
expressions means “add the elements of b.”

45 Claim. Every Dodo expression of type A→ B in which no free variables
occur can be written in point-free form by repeated application of the rewrite
rules in figure 2.3.

36 CHAPTER 2. FUNCTION-BASED DATA MODEL

We give an outline of the proof. The first step is to verify that the right-hand
sides of the equations in figure 2.3 are semantically equivalent to the left-hand
sides. In most cases, this is trivial. For comprehensions, the prescribed seman-
tics of the unit , zero and unnest functions are precisely that they should fulfill
the equation. The extension writer should verify this for every new comprehen-
sion type.

The second step is to verify termination of the rewrite process. First ob-
serve that expressions which are point-free according to definition 43 do indeed
reduce to themselves. Most rules in figure 2.3 either eliminate a syntactical
construct which is never introduced (comprehension syntax, if, pair formation),
or they yield an expression in which only strict subexpressions are enclosed in
translation brackets. Such rewrite rules never contribute to nontermination.

One curious case involves the const v construct. The const operator is
generated to alert subsequent rewriting stages to either insert a named frame
containing data from the database, or generate a frame containing a primitive
value k .

A λ-term (λx • k), with k a primitive constant, is rewritten to const k , which
is considered to be in normal form. Terms

[[
const v

]]
with v non-primitive are

never generated by the system but may be written by users. In such cases, they
are rewritten to

[[
λx • v

]]
and subjected to normal rewriting. Thus, although

figure 2.3 contains both a rule mapping
[[
λx •

]]
to const and one the other way

around, this never leads to nontermination of the rewrite process.

46 Core predefs. In order to support the rewrite process described in sec-
tion 2.5.2, certain predefined identifiers are needed. Every Dodo implementation
supports the unit type, sum- and product types and the Id functor. Useful im-
plementations also provide some primitive types to work with other than the
unit type, and typically one or more type functors that provide collection types
such as lists or bags. To support the minimal set of data types described above,
we need type formers 1, +, × and Id, and predefs for id , ∆, ×, exl , exr , ∇, +
inl and inr as defined in section 2.2.1.

For every functor F, such as List or inl , the rewrite process needs a dis-
tribution function DF : A × FB → F(A × B) that implements the following
behaviour:

DF(x , xs) = F (λx ′ • (x , x ′)) xs, i.e., DList(3, [10, 20, 30]) = [(3, 10), (3, 20), (3, 30)].

Distribution functions are used in section 2.5.3 to “straighten out” nested subex-
pressions with more than one free variable.

For type functors T Dodo needs a designated initial algebra τT that describes
how to construct values of the type. It is used as the source-algebra of a cata-
morphism when values of the type are used as a generator in a comprehension.

2.5. FLATTENING QUERIES 37

For every comprehension type M Dodo needs a corresponding functor TM , al-
gebra τM and zeroM , unitM , unnestM and concatM functions. As described in
paragraph 133, there are two common cases. For collection comprehensions, TM

is the type functor, τM the corresponding initial algebra, and unit , unnest and
the other functions are non-trivial. For aggregations, TM is Id, τM is the algebra
that does the actual work, and the helper functions are usually trivial. Finally,
support for conditional expressions requires a function bool2sum : B → 1 + 1.
It is used to rewrite if b then e1 else e2 fi to

(
∇ ◦

(
(λx • e1) + (λx • e2)

))
(bool2sum b),

so the rewrite process can continue with (λx • e1) and (λx • e2) separately.

2.5.3 Handling nested scopes

In section 2.5.2 we listed a set of rewrite rules for rewriting queries to point-
free form. We skipped one case, that of

[[
λy • f e

]]
where y occurs in f . The

problem here is that in point-free form, all variable bindings and references are
eliminated, but as long as f depends on y we cannot eliminate y and (λy •).
In this section we look at how to remove the dependence on y .

47 The easy cases. Let us enumerate all forms f can take. Because
f has function type, all forms from paragraphs 29 and 30 do not apply. In
paragraphs 31 and 32, we find five constructs which at the same time have
type X → (A→ B) and may contain references to y :

•
[[
λy • (f ′ e ′) e

]]
. See paragraph 48.

•
[[
λy • (f1 ◦ f2) e

]]
. Already covered by figure 2.3. Rewrites to

[[
λy •

f1 (f2 e)
]]
.

•
[[
λy • (λx • e ′) e

]]
. This we can rewrite to

[[
λy • e ′

x :=e

]]
, eliminating

the x .

•
[[
λy • (const v) e

]]
. The easiest way to deal with this is to replace the

const , yielding
[[
λy • (λx • v) e

]]
. To this we can apply the previous rule.

The only nontrivial case is the case f = (f ′ e ′), which we treat in the next
paragraph.

48 The hard case. First we consider an example. Suppose we encounter
[[
λy • Bag h e

]]
with y : A and e : Bag B . Given y : A, the function h has

type B → C . In other words,

y : A ` h : B → C .

38 CHAPTER 2. FUNCTION-BASED DATA MODEL

In a sense, h in λy • Bag h e is not applied to every element of the bag e, but to
y and every element of e. We modify h to make this dependence on y explicit:

h ′ : A× B → C .

To obtain h ′, we introduce the parameter z : A×B representing both y : A and
an element x : B of e. Our first attempt,

(
λz • h(exr z)

)
: A × B → C , still

contains free occurrences of y in h. These must be replaced by references to the
left-hand side of z :

h ′ :=
(
λz • hy:=exl z (exr z)

)
: A× B → C .

The function Bag h ′ has type Bag(A × B) → BagC . The next question is:
how to obtain a Bag(A×B) given y : A and e : BagB? To do this, we introduce
the distribution function

DBag : A× BagB → Bag(A× B)

which “distributes” the A over the Bag. For example,

DBag (a, {|1, 2|}) = {|(a, 1), (a, 2)|}.

Using the distribution function we can complete the rewriting:

[[
λy • Bag h e

]]
= Bag

[[
λz • hy:=exl z (exr z)

]]
◦DBag ◦

[[
λy • (y , e)

]]
.

49 Scope unnesting over functor-like operators. The above example
can be straightforwardly generalized to any operator Σ satisfying Σ (f ◦ g) =
Σf ◦ Σg . For such Σ, the following equation can be used to eliminate the
dependence of Σ h on y :

[[
λy • Σ h e

]]
= Σ

[[
λz • hy:=exl z (exr z)

]]
◦DΣ ◦

[[
λy • (y , e)

]]
(2.6)

where DΣ is defined by the equation

DΣ (y , xs) = Σ (λx • (y , x)) xs, (point-wise), or

DΣ ◦ (y ,) = Σ (y ,), (point-free)
(2.7)

where we introduce the abbreviation (y ,) = (λx • (y , x)). Notice that for any
new functor-like object Σ, an appropriate DΣ must be defined at the frame level.

2.5. FLATTENING QUERIES 39

A proof for equation (2.6) is given by the following calculation:

λy • Σ h e

= { h ′ = (λz • hy:=exl z (exr z)) as in the previous paragraph }

λy • Σ (h ′ ◦ (y ,)) e

= { Σ is functor-like }

λy • (Σ h ′ ◦ Σ(y ,)) e

= { Point-free definition of DΣ }

λy • (Σ h ′ ◦DΣ ◦ (y ,)) e
=

λy • (Σ h ′ ◦DΣ) (y , e)

= { y is not free in h ′ or DΣ }

Σ h ′ ◦DΣ ◦ (λy • (y , e))

For bifunctors, a similar result holds. Here are some examples of distribution
functions:

DId (a, b) = (a, b)

D× (a, (b1, b2)) = ((a, b1), (a, b2))

D+ (a, inl b) = inl (a, b)

D+ (a, inr b) = inr (a, b)

If Σ is a composite operator, e.g., Σ = FG or Σ = F + G , DΣ can be
constructed out of DF and DG . For instance, DFG = F DG ◦DF :

FG (y ,) = F (G (y ,)) = F (DG ◦ (y ,)) = F DG ◦F (y ,) = F DG ◦DF ◦ (y ,).

50 Generalization to arbitrary higher-order functions. In the case of
an arbitrary higher-order function Σ, the above trick does not work. In general,
Σ has type (X → Y)→ F (X ,Y)→ G(X ,Y) for certain F and G . We can still
construct h ′ = (λz • hy:=exl z (exr z)), but the extension writer has to define
a rewrite rule specifically for that Σ. The problem is that if y : Z , then Σ h ′

has type F (Z × X ,Y) → G(Z × X ,Y), which means that it returns values of
type G(Z ×X ,Y) rather than G(X ,Y). Of course, if X is not used in G , e.g.,
if G(X ,Y) = G ′(Y) for some G ′, that does not matter.

51 SK combinators. It is interesting to compare the translation here to
the theory of S, K, and I combinators [Tur79, PJ87]. With these combinators

40 CHAPTER 2. FUNCTION-BASED DATA MODEL

it is possible to rewrite any λ-term to a point-free form. The combinators are
given by the equations

(λx • x) = I,
(λx • c) = K c,

(λx • f e) = S (λx • f) (λx • e).
(2.8)

Comparing these to Figure 2.3, it turns out that K and I are present there
as id and const , respectively, but that there is no direct equivalent to S. The
S operator performs scope unnesting, similar to what we do here in Section 2.5.3.

The reason for our lack of S operators is that a λ-term rewritten to S, K,
I operators is still essentially a λ-term, but written in a form in which it can
be more efficiently reduced. In our setting, however, we have as the back end a
database kernel. That database kernel does not have sufficient expressive power
to perform reductions, especially reductions on higher-order terms. Therefore,
rewriting (λx • Bag f e) into S (λx • Bag f) (λx • e) is not to our advantage,
because it introduces a higher-order function (λx • Bag f), which we would
rather avoid.

2.5.4 Further translation

Once the query has reached point-free form, we are not finished yet. Recall the
example in paragraph 39. The first few steps, up to step (E5), brought the query
in point-free form. The later steps turn the query into a frame representation
of the query result.

52 Pushing computation into the frames. After step (E5) in para-
graph 39, we have the query Bag exr ◦dogs ′ : 1→ Bag(SS×Z). The general form
of the query is that it is a composition of functions, which are either operations
from the nested level (Bag, exr) or frames containing data (dogs ′). In the steps
that follow, two things happen. Frame definitions such as equation 2.3 are ex-
panded, and rewrite rules for complex operations are applied. The rewrite rules
push the computation into the frames, either by rearranging the frames or by
introducing new column operations. In the example, two such push-downs hap-
pen. The first is an application of the rule Bag f ◦bag〈d , r ,F 〉 = bag〈d , r , f ◦F 〉.
We will give a correctness argument for this rule later on. The second is
exr ◦pair〈F ,G〉 = G , which we already encountered as the point-free definition
of exr in equation (2.5).

The general pattern for push-down rules is f ◦ F = F ′ with f an operation
on nested data, F the frame representation of one or more values, and F ′ the
frame representation of the values after f has been applied to them. In other

2.6. EXTENSION WRITER OBLIGATIONS 41

words, the rewrite rule constructs a new frame F ′ which incorporates the action
of f into F . As mentioned in paragraph 42, the benefit of this is that such a
rule is stated in bulk fashion. It specifies how to perform operation f on several
values at the same time. In comparison to operations which work on an item at
a time, such bulk operations can often be implemented more efficiently on the
underlying platform.

53 Example. In chapter 3 we give example frame definitions for a number
of types and rewrite rules for the operations on those types. We have already
encountered the frame representation bag〈d , r ,F 〉 of the Bag type given there.
The interpretation function (paragraph 36) for bag〈〉 frames is only defined for
keys which occur in d . It specifies that when looking up a key in the frame, one
should look up the matching element keys in r and then build a bag out of the
elements obtained by looking up these keys in F . We will denote this as

bag〈d , r ,F 〉 x = {|F y | (x , x) ∈ d ∧ (x , y) ∈ r |}.

Notice that this is a point-wise definition of the semantics of the bag〈〉-frame. To
prove the correctness of the rewrite rule Bag f ◦ bag〈d , r ,F 〉 = bag〈d , r , f ◦ F 〉,
the extension writer can give an argument similar to the following:

(Bag f ◦ bag〈d , r ,F 〉) x

= { expand ◦ }

Bag f (bag〈d , r ,F 〉) x)

= { interpretation function }

Bag f {|F y | (x , x) ∈ d ∧ (x , y) ∈ r |}

= { Bag is a functor }

{| f (F y) | (x , x) ∈ d ∧ (x , y) ∈ r |}

= { introduce ◦ }

{| (f ◦ F) y | (x , x) ∈ d ∧ (x , y) ∈ r |}

= { interpretation function }

bag〈d , r , f ◦ F 〉 x

Again, this is a point-wise argument for a point-free rule.

2.6 Extension writer obligations

When extending the system with a new data type, the extension writer has the
following tasks:

42 CHAPTER 2. FUNCTION-BASED DATA MODEL

• Add a new frame type. Choose a name for the new frame type and give
a type signature relating the types of its components to the type of the
frame. Example: pair〈α→ A, α→ B〉 : α→ (A× B).

• Carefully define an interpretation function for the frame. This need not be
code, but it must be clear and unambiguous. The database administrator
needs to be able to use it while defining a mapping from nested data to
flattened data, and the extension writer needs it to prove correctness of
rewrite rules. If code is written, it either resides in Dodo itself or in the
application built on top of Dodo. Example:

pair〈F ,G〉 k = "(" (F k) "," (G k) ")".

• Give implementations for the frame domain, frame translation and frame
union operations. Example:

dom pair〈F ,G〉 = dom F = dom G , r ∗pair〈F ,G〉 = pair〈r ∗F , r ∗G〉.

• If the new type can be regarded as a functor, declare so and give a rewrite
rule for its map functionality. Example:

List f ◦ list〈d , r ,F 〉 = list〈d , r , f ◦ F 〉.

• Give implementations for type-specific operations by giving a type sig-
nature and rewrite rules. Example: mul : Z × Z → Z, defined by
mul ◦ pair〈atom〈f 〉, atom〈g〉〉 = atom〈mul(f , g)〉.

• Implement any flat operators needed by the above rewrite rules, such
as mul above. Give their type signature for use in the flat layer, and
provide an implementation in the underlying database system. Such an
implementation will typically be in written in C. Example:

mul(f : [α→Z], g : [α→Z]) =
{|(k , xy) | (k , x) ∈ f ∧ (k , y) ∈ g |} : [α→Z].

• For any functor or higher-order function Σ, give a rewrite rule for DΣ

satisfying DΣ ◦ (y ,) = Σ(y ,).

• If possible, designate an initial algebra for the type. (See chapter 5.) Also
designate algebras for interesting operations and catamorphisms between
them. (Again, see chapter 5.) Example: List has initial algebra τList. The
function sumlist is the catamorphism (|τList → 0 O (+)|).

• When possible, add a monad declaration to enable comprehension syntax
for the new type, and maybe for some of its operations. This is only
possible for operations which have an algebra (see above) declared for
them.

2.7. SUMMARY 43

2.7 Summary

Dodo is an extensible database with support for complex nested data types.
Internally, the nested data types are stored in a flattened, non nested form to
improve performance. The Dodo data model does not hide the mapping from
nested structures to flattened structures, but exposes it to the extension writer.
At the nested level, Dodo can be extended with new data types and opera-
tions. At the flattened level, with primitive (scalar) types and operations on
(binary) relations over those types. Throughout Dodo, the notion of functions
and function composition is used to guide the design of new data types and
operations.

In the Dodo data model, frames are the bridge between the nested and the
flat data model. They describe how to combine flattened information back into
nested form. A frame always stands for a key→value mapping. The extension
writer expresses the semantics of a frame type using an interpretation function,
which is used to prove the correctness of rewrite rules. Nested operations are
implemented by giving a rule for composition. For every operation f , rules are
given which prescribe how to replace the composition f ◦F of the operation with
a frame by a new frame F ′ which denotes the values in F but with f applied to
them.

Before these rules can be applied, the query first needs to be brought in
“point-free form.” This means that it is written as the composition of a sequence
of nested operations. Most rules for bringing the query in point-free form are
trivial; a few are not. Notable among the non-trivial rules are those dealing with
nested scopes. These rules require additional helper functions to be defined by
the extension writer for each new higher-order function.

44 CHAPTER 2. FUNCTION-BASED DATA MODEL

Chapter 3

Realization

In the previous chapter we described the “Theory of Dodo.” In this chapter
we consider implementation aspects. We give concrete frame definitions and
rewrite rules for a number of data types and explore the role of the type system
in Dodo. At the flattened layer, we do not directly use SQL or MIL [BK99]
the query language of MonetDB. Instead, we target an intermediate “column
algebra.” The column algebra is at approximately the same level of abstraction
as MIL, but abstracts away from the physical representation of keys, see Sec-
tion 3.2. Apart from allowing a more natural representation of composite key
types (multi-attribute primary keys) in SQL, this also improves readability be-
cause it hides naming differences and bookkeeping chores. In general, we strife
for every column operation to be easily implementable in MIL, possibly with
the use of user defined functions.

In Section 3.1, we discuss some elementary and often used column opera-
tions, giving a taste of the column algebra and clearing the way for later sections.
In Section 3.2 we consider sum and product key types, which often arise during
query processing in Dodo. We explain when they arise, and introduce abstract
functions mksum and mkprod to hide their implementation details. We also dis-
cuss how to implement them on MonetDB and SQL. In Section 3.3 we describe
a number of data types as Dodo extensions. This serves both as an illustration
of what Dodo extensions look like to the programmer, and to provide a baseline
Dodo implementation for use in later chapters. In Section 3.4 we briefly discuss
Dodo’s type system and possible improvements to it. Improving Dodo’s type
inference and propagation mechanism directly leads to opportunities for Dodo
to emit better flat query plans.

54 Bag columns semantics. The columns (binary relations) are bags of

45

46 CHAPTER 3. REALIZATION

pairs rather than sets of pairs, because the same is true in MonetDB. This makes
surprisingly little difference to the implementation of the frame operations in
this chapter, because the use of column properties such as head-completeness
does not really change, and because we are already very careful that whenever
we take the union of two sets, the sets are disjoint. It does mean, however, that
the semantics of the column operations are defined in terms of bag-braces {| |}
rather than set-braces { }. For instance, we write

twin(c : [α−β]) = {|(x , x) | (x , y) ∈ c|} : [α−α] (3.1)

rather than

twin(c : [α−β]) = {(x , x) | (x , y) ∈ c} : [α−α].

55 Type notation and propagation of properties. Recall from para-
graph 34 the notation [K −L] for a binary relation (“column”) with heads in K
and tails in L. The dash in the middle can be adorned with markers for special
properties. For instance, [K →L] denotes a many-to-one relation, and [K 7−L]
means that all elements in K are present as a head. Moreover, we write [K −!]
for columns with the property that every head is equal to its tail.

Many operators propagate column properties of their arguments. For in-
stance, for general columns c : [α− b], the result of twin(c) has type [α−!].
However, if c is head-distinct or head-complete, then so is the result of twin. In
paragraph 35, we introduced the type predicate Cop to embody this information.
It is tempting to try to incorporate it also in type signatures such as (3.1), but
this quickly becomes unreadable. Therefore we choose to give only the minimal
set of properties in these signatures. If a column operator is given as taking ar-
guments with properties, this means that the properties must be present for the
operation to be well defined. If the return value of an operator has properties,
these are known to be always present, regardless of the argument properties.
Other information in Cop has no special notation, but will sometimes be noted
in the surrounding text.

3.1 Basic column operators

The choice of the operations here is based on the ideas in Section 2.3. We
keep the number of data types in the flat layer as small as possible, allowing
only scalar types and binary relations between scalar types. In particular, we
use binary identity relations to implement sets (unary relations). This makes
it possible to implement things such as domain restriction of tables using the
normal join operators. However, practical considerations may make it more

3.1. BASIC COLUMN OPERATORS 47

attractive to have a column algebra in which such operations are present as as
explicit operators. Fortunately, the line of thinking underlying the translation
scheme of Chapter 2 does not depend on the particular form of the core algebra.

56 Column creation. The schema defined by the DBA (paragraph 20)
provides access to the existing data in the database through named columns. In
this paragraph we introduce some operators useful for constructing new columns
during query evaluation. The first operator is emptycol . It creates an empty
column, the type of which is to be determined through type inference.

emptycol() = {||} : [K ↔L].

The second is colpair , which takes a pair of primitive values and returns a
column containing just this pair:

colpair(x : K , y : L) = {|(x , y)|} : [K ↔L].

57 Twin and sethead. There are several operations which overwrite head
and/or tail of a column with either a constant, head or tail.

converse(c : [K −L]) = {|(y , x) | (x , y)← c|} : [L−K]

sethead(c : [K1−K2], v : L) = {|(v , y) | (x , y)← c|} : [L−K2]

settail(c : [K1−K2], v : L) = {|(x , v) | (x , y)← c|} : [K1−L]

twin(c : [K −L]) = {|(x , x) | (x , y)← c|} : [K −!]

rtwin(c : [K −L]) = {|(y , y) | (x , y)← c|} : [L−!]

Of these functions, settail and twin preserve head-properties, sethead and rtwin
preserve tail-properties and converse switches them. Moreover, the twin and
rtwin propagate the properties also to the other attribute. To keep our type
system satisfied, we also provide special twinu and rtwinu operators that weed
out duplicates and assert head and tail completeness properties:

twinu(c : [K −L]) = distinct {|(x , x) | (x , y)← c|} : [K ↔!],

rtwinu(c : [K −L]) = distinct {|(y , y) | (x , y)← c|} : [L↔!].

For readability, we will often abbreviate converse(r) to r∪.

58 Boolean operators. In the prototype, we assume that the underlying
system supports booleans (possibly represented as integers that are either zero
or not) and we provide the usual operations.

opnot(b : [α→B]) = {|(h,¬v) | (h, v)← b|} : [α→B]

opand (b1 : [α→B], b2 : [α→B]) = {|(h, b1(h) ∧ b2(h)) | (h, x)← b1|} : [α→B]

opor (b1 : [α→B], b2 : [α→B]) = {|(h, b1(h) ∨ b2(h)) | (h, x)← b1|} : [α→B]

48 CHAPTER 3. REALIZATION

We also define a column-wise equality operator on primitive values as the pri-
mary sources of booleans:

opeq(f1 : [α→K], f2 : [α→K]) = {|(h, f1(h) = f2(h)) | (h, x)← f1|} : [α→B].

In paragraph 76 we implement the function bool2sum : B→ 1 + 1 using two
column operators selecttrue and selectfalse defined such that for every f , there
is a partitioning (α1, α2) of the heads of f such that

selecttrue(f : [α→B]) = {|(h, †) | (h, x)← f , x true|} : [α1 7→7 1]

selectfalse(f : [α→B]) = {|(h, †) | (h, x)← f , x false|} : [α2 7→7 1]

The tail type is set to 1 because it gains us a tail-completeness property.

3.2 Key representation

59 Total functions. Key types are used as the domain type for frames.
Frames are total functions, i.e., they assign a value to every key in their do-
main. In some respects, it would have been easier to allow frames to be partial
functions, which do not have to assign a value to every key. However, after
experimenting with a theory of Dodo based on partial functions, we have come
to the conclusion that using partial functions makes it much harder to reason
about frame expressions, because there is no simple way anymore to guarantee
that frames actually contain certain data. Attempts to improvise such ways boil
down to reinventing total functions.

Therefore, in Dodo frames are total functions and thus require special types
to serve as their domain. For instance, if we have a frame describing dogs and a
frame describing people, the dog frame has as its domain a special “dog identi-
fier” type containing precisely as many keys as there are dogs in the database.
Likewise, the people frame has a special-purpose “people identifier” type.

The special purpose types described here are static, in the sense that they
denote sets of identifiers present in the current database. It is of course possible
that the database changes, but for the duration of the query evaluation process,
it can be considered immutable. During query evaluation, however, frames are
constructed representing partial query results. Such frames also need special
purpose types to denote their domain. In the rest of this section, we examine
how such dynamic special purpose types occur, and how they are handled by
Dodo’s type system.

3.2. KEY REPRESENTATION 49

60 Dynamic special-purpose types. Given the special-purpose types
representing database data, the question arises which types are used as the do-
main of the frames used as intermediate stages during rewriting and evaluation.
For example, in a query such as

Bag [(personname p, dogname d) | p ← persons, d ← dogs],

the resulting bag〈d , r ,G〉 frame contains one pair for every person-dog combi-
nation. Therefore, the pair〈〉 frame G enclosed by the bag〈〉 frame must have
|persons| times |dogs| keys in its domain. As another example, suppose we have
two frames F1 = bag〈d1, r1,G1〉 : α1 → Bag A and F2 = bag〈d2, r2,G2〉 : α2 →
Bag A with α1 and α2 disjoint. According to Section 2.6 and paragraph 38, the
bag〈〉 frame must have a rewrite rule which can combine F1 and F2 into a frame
F1 t F2 = bag〈d , r ,G〉 : (α1 ∪ α2) → Bag A. However, if G1 has type β → A
and G2 has type γ → A, in general we cannot simply throw the elements in G1

and G2 in one heap: G1 t G2 is only defined if β and γ are disjoint subsets of
a common base type, which need not be the case. And even if it were the case
that β and γ are both subsets of, say, the integers, then we have no way to make
sure they are disjoint.

61 Making up new types. In situations such as the above, the Dodo
formalism allows to simply assume the existence of a suitable type, and use
helper operations to obtain relations between this type and known keys. For
instance, in the situation where we have a column r : [α−β] of person-dog pairs,
we create a special purpose type γ to represent the pairs. We use operations
mkprod(), prodleft() and prodright() to obtain the relationship between γ, α and
β:

r : [α−β]

mkprod(r) : [α←7 γ]

prodleft(r) : [γ 7→α]

prodright(r) : [γ 7→β]

How γ, mkprod(), prodleft() and prodright() are implemented, is up to the un-
derlying database. On MonetDB, with its machine oriented binary model, α, β
and γ are most likely all subsets of a variant of the integer type. In that case,
mkprod() can be implemented using a simple row-numbering operation. For an
example, see paragraph 62.

In the other example, where G1 : β → A and G2 : γ → A had to be
combined into a single frame, G : ?→ A, we first obtain g1 = dom G1 : [β↔!]
and g2 = dom G2 : [γ↔!]. These relations represent the domains of G1 and G2.

50 CHAPTER 3. REALIZATION

Then, we posit a type δ containing precisely |g1|+ |g2| elements, and obtain the
relationship between β, γ and δ:

g1 : [α1−β]

g2 : [α2− γ] with α1 ∩ α2 = ∅

mksum(g1, g2) : [(α1 ∪ α2)←7 δ]

sumleft(g1, g2) : [δ→β]

sumright(g1, g2) : [δ→ γ]

This is elaborated in paragraph 63.

62 mkprod. Together with the type signatures

mkprod([α−β]) : [α←7 γ],

prodleft([α−β]) : [γ 7→α],

prodright([α−β]) : [γ 7→β],

the defining characteristic of mkprod(), prodleft() and prodright() is

prodleft(r)∪ ∗ prodright(r) = r . (3.2)

Essentially, this means that the operations neither lose information, because
r can still be reconstructed, nor make up new information, because the type
signature states that γ is complete. Thus, mkprod(r) constructs γ such that
there is a one-to-one mapping between γ and the rows of r . In an integer-
based key representation, this can easily be implemented using a row numbering
operator. In the following example, row numbering arbitrarily starts at 100:

r
1 10
1 20
2 30
3 40
4 40

mkprod(r)
1 100
1 101
2 102
3 103
4 104

prodleft(r)
100 1
101 1
102 2
103 3
104 4

prodright(r)
100 10
101 20
102 30
103 40
104 40

Notice that prodleft() is simply the converse of mkprod(). We include it anyway
because of symmetry with mksum().

63 mksum. Similarly, with α1 ∩ α2 = ∅, mksum() is characterized by the
signatures

mksum([α1−β], [α2− γ]) : [(α1 ∪ α2)←7 δ]

sumleft([α1−β], [α2− γ]) : [δ→β]

sumright([α1−β], [α2− γ]) : [δ→ γ]

3.2. KEY REPRESENTATION 51

together with the equations

mksum(r1, r2) ∗ sumleft(r1, r2) = r1,

mksum(r1, r2) ∗ sumright(r1, r2) = r2.

As with mkprod , these equations ensure no information is lost, while the type
signature ensures no extra information is contributed. Here is an example of
how mksum can implemented using unions and row numbering operations:

r1
1 a
2 b
2 c

r2
4 P
5 Q
6 Q

sumleft(r1, r2)
10 a
11 b
12 c

sumright(r1, r2)
23 P
24 Q
25 Q

mksum(r1, r2)
1 10
2 11
2 12
4 23
5 24
6 25

64 Order-preserving versions. We assume our primitive types, or at
least the ones used as index types, to be equipped with an ordering. The
ordering of the element-keys is used in the list〈〉 frame to represent the or-
der of the elements in the list. This necessitates the introduction of special,
order-preserving versions of mkprod , mksum and friends, called mkprod ord ,
prodleft ord , prodright ord , mksum ord , sumleft ord and sumright ord . By
order-preserving we mean that for mkprod(r) the ordering on the new keys
of type γ mirrors the lexical ordering on the corresponding (α, β)-pairs in r :

x < y
⇐⇒

(prodleft ord(r)(x), prodright ord(r)(x))
< (prodleft ord(r)(y), prodright ord(r)(y)).

Similarly, for mksum ord(r1, r2) the ordering of the new δ-keys mirrors that
of the β- and the γ-keys whenever appropriate:

∀(d , b), (d ′, b′) ∈ sumleft ord(r1, r2) • d < d ′ ⇐⇒ b < b′

∀(d , c), (d ′, c′) ∈ sumright ord(r1, r2) • d < d ′ ⇐⇒ c < c′

Here is an example for mksum ord , consider in particular p and q .

r1
1 a
3 b
5 c

r2
2 q
4 p

sumleft ord
10 a
11 b
12 c

sumright ord
20 p
21 q

mksum ord
1 10
2 21
3 11
4 20
5 12

52 CHAPTER 3. REALIZATION

Notice that every implementation of mkprod ord also suffices as an imple-
mentation of mkprod , but not the other way around. This illustrates how bags
give the implementation more freedom than lists.

3.3 Data type definitions

The operations defined here are the bare minimum needed to demonstrate inter-
esting cases. For types, that means B, Z and SS types, plus List and Bag func-
tors. Having two primitive types makes examples much easier to comprehend
because they can be used as “before” and “after” types, e.g., decimal : Z→ SS .
We have an lb : ListA → BagA operation and a sum : BagA → Z operation,
both catamorphisms. Furthermore, we define functions any and all of type
BagB → B that calculate the catamorphisms (|false O (∨)|) and (|true O (∧)|),
respectively. We define list-, bag-, sum-, exists- and forall-comprehensions. We
also define an equality function eq for at least the unit type, the primitive types,
sum types and product types. Equality of bags and lists will probably be left
unimplemented for the time being.

65 The Id functor and id function. The Id functor does not have its own
frame type. The rewrite rules

Id h ◦ F = h ◦ F

DId ◦ pair〈F ,G〉 = pair〈F ,G〉

are sufficient to translate any expression to frame form. The identity function
has a very simple rewrite rule:

id ◦ F = F .

66 Implementing constant functions. The constant function construc-
tor const from paragraph 32 is used for two purposes. The first is to intro-
duce literals into the point-free form, e.g., the simple query 3 has point-free
form const 3, which is translated using the rule

const 3 ◦G = atom〈settail(dom G , 3)〉.

The other use is to introduce named values defined in the Dodo schema. Recall
Equation (2.3), where dogs ′ = (λx • dogs) is defined as

(λw • dogs) = dogs ′ = bag〈d , r , tuple〈atom〈f 〉, atom〈g〉〉〉

3.3. DATA TYPE DEFINITIONS 53

If the schema defines dogs = F † where F is a frame of type 1 → A, and if
G : α→ B , then the expression const dogs ◦G can be translated as follows:

const dogs ◦G = settail(dom G , †) ∗ F .

What happens here is that settail(dom G , †) creates a column that maps every
key in α (the domain of G) to †. This column is then used to transform F from
domain 1 to domain α.

67 The atom frame. The frame atom〈f 〉 is used to denote values of a
primitive type. Type rule:

atom〈[α 7→K]〉 : α→ K

To look up a value in an atom frame, look it up in the binary relation it wraps:

atom〈f 〉 x = f (x).

Frame rules:

empty = atom〈emptycol()〉

dom atom〈f 〉 = twin(f)

r ∗ atom〈f 〉 = atom〈r ∗ f 〉

atom〈f1〉 t atom〈f2〉 = atom〈f1 ∪ f2〉

Because the t operator forbids overlapping domains, the frame union of two
atom〈〉 frames is simply the column union of its columns.

68 The pair frame. The pair〈〉 frame denotes pairs. Type rule:

pair〈α→ A, α→ B〉 : α→ (A× B)

To look up a key in a pair frame, look it up in its two components and combine
the results into a pair:

pair〈F ,G〉 x = "(" F x "," G x ")"

Frame rules:

empty = pair〈empty , empty〉

dom pair〈F ,G〉 = domF = domG

r ∗ pair〈F ,G〉 = pair〈r ∗ F , r ∗G〉

pair〈F1,G1〉 t pair〈F2,G2〉 = pair〈F1 t F2,G1 tG2〉

54 CHAPTER 3. REALIZATION

Recall from paragraph 23 that pairs are constructed using the M operator, trans-
formed using × and destructed using exl and exr . We give rules for these
operations, plus the distribution function D×.

(f M g) ◦ F = pair〈f ◦ F , g ◦ F 〉

(f × g) ◦ pair〈F ,G〉 = pair〈f ◦ F , g ◦G〉

exl ◦ pair〈F ,G〉 = F

exr ◦ pair〈F ,G〉 = G

D× ◦ pair〈H , pair〈F ,G〉〉 = pair〈pair〈H ,F 〉, pair〈H ,G〉〉

69 The either frame. The either〈F ,G〉 frame denotes a sum type. The
idea is that the key exists either in F or in G . The type rule is

either〈α1 → A, α2 → B〉 : α→ (A + B),

with (α1, α2) a partitioning of α, i.e., α1 ∪ α2 = α and α1 ∩ α2 = ∅. To look
up a key k in a frame either〈F ,G〉, check in which domain it occurs and return
the appropriate value:

either〈F ,G〉 x = inl (F x) if x occurs in dom F ,

either〈F ,G〉 x = inr (G x) if x occurs in dom G ,

The required frame rules and construction, destruction and distribution func-
tions:

empty = either〈empty , empty〉

dom either〈F ,G〉 = domF t domG

r ∗ either〈F ,G〉 = either〈r ∗ F , r ∗G〉

either〈F1,G1〉 t either〈F2,G2〉 = either〈F1 t F2,G1 tG2〉

inl ◦ F = either〈F , empty〉

inr ◦ F = either〈empty ,F 〉

(f + g) ◦ either〈F ,G〉 = either〈f ◦ F , g ◦G〉

(f O g) ◦ either〈F ,G〉 = (f ◦ F) t (g ◦G)

D+ ◦ pair〈H , either〈F ,G〉〉 = either〈pair〈domF ∗H ,F 〉, pair〈domG ∗ H ,G〉〉

In the rule for (f O g), we first calculate f ◦F and g ◦G which have type α1 → A
and α2 → A, respectively. Because the either〈〉 frame guarantees that α1 and

3.3. DATA TYPE DEFINITIONS 55

α2 are a partition of α, we construct the result by simply combining f ◦ F and
g ◦ G using t. Notice that in the rule for D+, we have to write dom ∗ H in
order to get the domains in the pair〈〉 frames right: F is only defined on α1

while H is defined on the whole α.

70 The bag frame. The bag〈d , r ,F 〉 frame is used to represent bags. Most
items from the shopping list in Section 2.6 are present here. Type rule:

bag〈[α 7↔7 !], [α−β], β → A〉 : α→ BagA

In a frame bag〈d , r ,F 〉, the column r gives the relation between the outer keys,
which identify bags, and the inner keys, which identify elements in the bag. If
a bag identified by a :: α happens to be empty, it contains no elements, and
therefore a does not occur in r . To ensure that we are able to recover the
domain of the frame, column d keeps track of the keys of all bags in the frame.

Here are the required frame operations for bags:

dom bag〈d , r ,F 〉 = d

r ′ ∗ bag〈d , r ,F 〉 = bag〈twin(r ′ ∗ d), r ′ ∗ r ,F 〉

bag〈d1, r1,F1〉 t bag〈d2, r2,F2〉 = bag〈d1 t d2,mksum(r1, r2),
sumleft(r1, r2) ∗ F1

tsumright(r1, r2) ∗ F2〉

The frame union operator uses mksum to coerce F1 and F2 to the same type in
order to combine the elements into a single frame.

Our name for the initial algebra for bags is bag . For the Bag monad we
define

zeroBag ◦ F = bag〈domF , emptycol(), empty〉

unitBag ◦ F = bag〈domF ,domF ,F 〉

unnestBag ◦ bag〈d1, r1, bag〈d2, r2,F 〉〉 = bag〈d1, r1 ∗ r2,F 〉

Bag f ◦ bag〈d , r ,F 〉 = bag〈d , r , f ◦ F 〉

DBag ◦ pair〈F , bag〈d , r ,G〉〉 = bag〈d ,mkprod(r),
pair〈prodleft(r) ∗ F ,

prodright(r) ∗G〉〉

Comprehension type Bag : (bag ,Bag, (zeroBag, unitBag, unnestBag))

The unit rule takes the frame F and uses it three times in the result. Because
unitBag ◦ F has the same domain as F , the result frame gets domF as its
first component. It gets domF as the outer-inner relation because every bag

56 CHAPTER 3. REALIZATION

it constructs (outer) contains precisely one element (inner). We use here that
domF is a binary identity relation. Finally, it uses F itself as the mapping from
element keys to elements.

The zero rule is very much alike, except that it creates an empty inner-outer
relation to signify that all bags in the frame are empty.

71 The list frame. The list frame has the same structure as the bag frame,
but it needs to maintain the ordering of the elements within it. We choose to
do so using the native ordering of the element keys, so in the frame list〈d , r ,F 〉
with r : [α−β], the ordering of the β keys determines the order of the elements
in the list. An alternative implementation would be not to use ordering of
the element keys, but simply store an additional column containing position
numbers (ordinals). This approach is explored in Section 4.2.1.

Most rewrite rules can simply be copied from the bag frame, but frame union
needs to use the order-preserving variants of mksum and friends. Moreover,
where unnestBag translates to a simple column semijoin, unnestList needs to
use the order preserving mkprod ord operator to ensure proper ordering of the
flattened list. Consider

unnestList ◦ list〈d1, r1, list〈d2, r2,F 〉〉.

Assume the types r1 : [α−β] and r2 : [β− γ]. The order of the elements in the
unnested list is determined by both the β and the γ keys in r2. The α-keys are
irrelevant because they identify result lists, not elements. In the rewrite rule

unnestList ◦ list〈d1, r1, list〈d2, r2,F 〉〉
=

list〈d1, r1 ∗mkprod ord(r2), prodright ord(r2) ∗ F 〉,

the expression mkprod ord(r2) gives a relation between the β-keys and new iden-
tifiers for the (β, γ)-pairs in r2, so r1 ∗mkprod ord(r2) gives a relation between
the outer α-keys and the new element keys. Because we use the ∗ ord variants,
the new element keys preserve the original ordering (see paragraph 64). In the
third component, we translate the elements in F to the new properly ordered
key space.

72 The list-to-bag function lb. Switching from lists to bags is just a
matter of changing the frame name.

lb : ListA→ BagA

lb : list →INS bag

lb ◦ list〈d , r ,F 〉 = bag〈d , r ,F 〉.

The first entry gives the type of lb. The second its place in the homomorphism
graph. The third its rewrite rule.

3.3. DATA TYPE DEFINITIONS 57

73 The sum function. The sum function has type BagZ→ Z. That means
that its rewrite rule is of the form

sum ◦ bag〈d , r , atom〈f 〉〉 = atom〈XX 〉.

Assuming types d : [α 7↔7 !], r : [α−β] and f : [β 7→Z], the mystery column XX
must have type α→ Z and maps each a ∈ α to the sum of the numbers in the
relational image (r ∗ f)(a). We take XX = opsum(d , r ∗ f) where opsum is the
column operator which sums the tails of its second argument while grouping the
heads by its first argument. Due to the possibility that (r ∗ f)(a) = emptyset ,
the translation not only depends on r ∗ f but also on d . Keys which occur in d
but not in r ∗ f are assigned sum 0. Because in SQL, empty groups are assigned
NULL, implementing opsum in SQL involves outer joins and special handling of
the resulting NULL-values.

A general pattern in Dodo is that aggregate functions in the nested-structure
language are translated to grouping aggregates in the underlying database sys-
tem. Of course, if the head-type is 1, the grouping could be omitted.

The function sum is a homomorphism from bag to the special algebra 0O(+).
In the prototype, the latter is called sum. The comprehension type below allows
us to write things such as Sum[x 2 | x ← some bag or list].

sum : ListZ→ Z

sum : bag →INS sum

sum ◦ bag〈d , r , atom〈f 〉〉 = atom〈opsum(d , r ∗ f)〉

Comprehension type Sum : (sum, Id, (zerosum , unitsum , unnestsum))

zerosum = const 0

unitsum = id

unnestsum = id

74 The functions any and all . The functions any and all are entirely
similar to sum, except that they calculate the logical disjunction (∨) with unit
element false and the logical conjunction (∧) with unit element true, respec-
tively. Their rewrite rules assume suitable grouping aggregate operations to
exist at the column level.

Because of the way they are typically used in comprehensions, the corre-
sponding comprehension types are named Exists and Forall rather than Any
and All .

any : BagB→ B

58 CHAPTER 3. REALIZATION

any : bag →INS any

any ◦ bag〈d , r , atom〈f 〉〉 = atom〈opany(d , r ∗ f)〉

Comprehension type Exists : (any , Id, (zeroany , unitany , unnestany))

zeroany = const false

unitany = id

unnestany = id

all : BagB→ B

all : bag →INS all

all ◦ bag〈d , r , atom〈f 〉〉 = atom〈opall(d , r ∗ f)〉

Comprehension type Forall : (all , Id, (zeroall , unitall , unnestall))

zeroall = const true

unitall = id

unnestall = id

Note that if the prototype would have a Set type, the all and any functions
would be homomorphisms from set instead of bag .

75 The decimal function. The function decimal maps integers to their
decimal string representation.

decimal : Z→ SS

decimal ◦ atom〈f 〉 = atom〈opdecimal (f)〉

76 Boolean operations. Booleans can very well be implemented as sum
types 1 + 1, but in the prototype we simply implement them using an under-
lying boolean type, which can either be a proper two-valued boolean type or
something in the C style of integers where zero represents false and the other
values represent true. We abstract from this choice by introducing selecttrue
and selectfalse column operators.

not : B→ B

and : B× B→ B

or : B× B→ B

bool2sum : B→ 1 + 1

not ◦ atom〈b〉 = atom〈opnot(b)〉

and ◦ pair〈atom〈b〉, atom〈b ′〉〉 = atom〈opand(b, b′)〉

3.3. DATA TYPE DEFINITIONS 59

or ◦ pair〈atom〈b〉, atom〈b ′〉〉 = atom〈opor (b, b′)〉

bool2sum ◦ atom〈b〉 = either〈selecttrue(b), selectfalse(b)〉

77 Equality eq for primitive types. Comparing primitive values is left
to a suitable column operator. Its implementation depends on the arguments
type and on the way booleans are implemented.

eq ◦ pair〈atom〈f 〉, atom〈g〉〉 = atom〈opeq(f , g)〉.

78 Equality for product types. Pairs are equal if their left components are
equal and their right components are equal. This translates into the following
rewrite rule:

eq ◦ pair〈pair〈F1,G1〉, pair〈F2,G2〉〉
=

and ◦ pair〈eq ◦ pair〈F1,F2〉, eq ◦ pair〈G1,G2〉〉.

79 Equality for sum types. Equality for sum types is easy to understand
but more complex to implement than for product types. Two sum values are
not equal if their left-, right-handedness differs, or if they are equally handed
but their encapsulated value differ. The rewrite rule separates the four cases
left/left, left/right, right/left and right/right.

eq ◦ pair〈either〈F1,G1〉, either〈F2,G2〉〉 = LL t LR t RL t RR

where

LL = eq ◦ pair〈(domF1 ∩ domF2) ∗ F1, (domF1 ∩ domF2) ∗ F2〉

LR = (domF1 ∩ domG2) ∗ const false

RL = (domG1 ∩ domF2) ∗ const false

RR = eq ◦ pair〈(domG1 ∩ domG2) ∗G1, (domG1 ∩ domG2) ∗G2〉

Explicitly calculating all these intersections is necessary because we work in a
function based representation, so eq expects its arguments to have exactly the
same domain. An alternative implementation would be a higher-order function
eq ′ that calculates equality only on the intersection of its arguments domains, to-
gether with a separate operator override that helps insert the default value false
where the domains to not overlap. This yields

eq ◦ pair〈either〈F1,G1〉, either〈F2,G2〉〉
=

override(const false, eq ′(F1,F2) t eq ′(G1,G2))

60 CHAPTER 3. REALIZATION

For primitive types, the eq ′ operator maps nicely to operations supported by
most platforms:

select x.h, x.v = y.v

from x, y

where x.h = y.h

80 Equality for lists and bags. Equality testing for lists and bags is
doable but not be very efficient. In the prototype we omit implementations for
the eq operator on lists and bags.

3.4 The Dodo type system

81 Type inference. Dodo uses a type inference system. The goal of type
inference is to determine the type of the query result and of the subexpressions
of the query automatically, with as little user input as possible. We begin with
a small example of why this is useful. Recall the empty frame operator from
paragraph 38. It is used by rewrite rules when they need the frame represen-
tation for an an empty frame, i.e., a frame ∅ : ∅ → A. An example of such a
situation is the rewrite rule for the sum type constructor inl : A→ A + B :

inl ◦ F = either〈F , empty〉.

Here, all data (F) is pushed to the left side of the frame, but something must
be put on the right side. The idea is that the the rule for inl simply writes
empty , and that for every type B , there is an instance emptyB : ∅ → B which
constructs a frame of the proper type.

Type inference makes it possible for the rewrite rules to simply write empty
and let other parts of the system (other extensions) worry about which frame
structure should be put there.

82 Unification. Type inference takes place by assigning each subexpression
a type template containing both concrete types (known) and type variables (not
yet known). The semantics of the language give rise to constraints on the type
variables. For instance, the expression (f e) can only have type B if e : A
and f : A → B for certain A. These constraints can be expressed as a set
of equations on the type variables, and solved in a process called unification,
which yields the most general assignment to the type variables which satisfies
all constraints [Pie02]. See figure 3.1 for an example of this. In the example,
the most general type assignment for ∇ ◦ either〈F , empty〉 is calculated. After

3.4. THE DODO TYPE SYSTEM 61

∇ ◦ either〈F , empty〉

T1 = A1 → C1

either〈F , empty〉

T2 = A2 → B2 + C2

∇

T3 = A3 + A3 → A3

F

T4 = α→ L

empty

T5 = A5 → B5

A1→B1=T2B1→C1=T3

A2→B2=T4 A2→C2=T5

A1 = A2 = α
B1 = A3 + A3 = B2 + C2 = L + L
C1 = A3 = L
A2 = α
B2 = A3 = L
C2 = A3 = L
A3 = B2 = C2 = L
A5 = A2 = α
B5 = C2 = L

Figure 3.1: Every node in the abstract syntax tree (AST) is assigned a type
template, and every edge in the AST contributes equations on the type variables
A1, . . . , B5. The type templates of ∇ = id O id and F : α→ L are given in the
data dictionary. Solving the equations allows us to conclude that empty is used
here with type A5 → B5 = α→ L.

unification, it is known that empty is used here with type α → L. If L is a
primitive type, it should be implemented as an atom〈〉 frame.

Referring back to paragraph 67, where the atom〈〉 frame is defined, we see
that the next step in the translation process is the replacement of empty by
atom〈emptycol()〉, yielding

∇ ◦ either〈F , atom〈emptycol()〉〉.

Thanks to the derived type of empty , we now know its replacement is an
atom〈〉 frame.

83 Error checking. The most obvious use for type inference is, of course,
error checking. If unification is unable to find a solution, the constraints on the
type variables must be contradictory, which indicates a mistake in the query or
rewrite rule.

In a system based on rewrite rules, type checking is also useful for intermedi-
ate steps. If the initial query is well-typed, the intermediate stages should also
be well-typed. The Dodo prototype has a switch which turns on type checking
for every intermediate step, thus pinpointing the rewrite rule that introduced
the mistake.

62 CHAPTER 3. REALIZATION

In many cases, it is possible to verify the types not when the rewrite rule is
applied, but when it is defined. If the rewrite rule can expressed purely using
pattern matching, for instance,

(λx • (e1, e2)) = (λx • e1) M (λx • e2),

the type checking can even be performed at rule compile time.

84 Key space management. In Section 3.2, we discussed key spaces,
that is, special purpose types which represent collections of certain objects. In
paragraph 61 we stated that “the Dodo formalism allows to simply assume
the existence of a suitable type, and use helper operations to obtain relations
between this type and known keys.” By now, we can be more explicit over what
happens: during type checking, the column expression mkprod(r) gets assigned
a template type variable as usual. During unification, this type variable is then
adorned with annotations about the key spaces it is a product of, and also a
reference to the expression out of which the new type is created, in this case r .
A similar thing happens with mksum(r1, r2) and both associated ∗left() and
∗right() functions.

The annotations about the key spaces are used by the back end to choose
the representation: in MonetDB, the representation is simply another object-id
counter, but in a SQL system, product keys could be implemented using multi-
attribute primary keys. The reference to the underlying relations is used to
detect mismatches between the use of mkprod() and prodright() and prodleft(),
and also for readability and optimization purposes.

85 Abstract prodleft and prodright. As stated above, product and
sum key spaces created using mkprod() and mksum() carry a reference to the
arguments of the keyspace operator which created them. This is used for error
detection, but it also has other uses. These uses are related to issues which arise
when a composite key space is used in more then one place in a frame, which is
often the case. Consider the frame

bag〈d ,F(mkprod(r)),G(prodright(r))〉

The F signifies that the relation part of the bag〈〉 frame somehow uses mkprod(r)
to construct a composite keyspace γ out of r : [α−β], and G that the item part
of the frame uses prodright(), and possibly prodleft() to take it apart again and
use α and β in a certain way.

Dodo contains many rewrite rules which optimize column expressions. Some
of these might affect mkprod(r). For instance, in some contexts, we might wish
to replace r ′ ∗mkprod(r) by mkprod(r ′ ∗ r). This is not in general correct, but

3.4. THE DODO TYPE SYSTEM 63

it might be correct in certain contexts. However, if we do this replacement in
F , the type γ is replaced by some γ′ and expression G(prodright(r)) becomes
incorrect, because it uses the wrong relation as its input. In summary, it can be
hard to locally optimize expressions which use mkprod(), because modifications
can have consequences in remote parts of the query.

Another, related, problem is that in practice, the r in mkprod(r) can become
quite a large expression, which makes intermediate results hard to read and
hinders experimentation with rewrite rules. The solution we have chosen in
Dodo is that we introduced abstract versions of mkprod() and friends, where r
is given only as an argument to mkprod , now called amkprod(r). The abstract
destructors aprodleft() and aprodright() have the same meaning as their concrete
counterparts, but do not repeat r . The reason this works is that although r
is relevant to the back end, where a concrete representation of the composite
key must be chosen, but it is irrelevant during query translation at the Dodo
level. At the Dodo level, the only thing that matters is that keys from γ can be
mapped back to α and β, which is the function of aprodleft() and aprodright().
See figure 3.2 for a graphical comparison of parse trees with and without abstract
composites.

86 Using column properties for optimization. Careful propagation of
column properties leads to many local optimization opportunities. Frame-level
rewrite rules are generally written under the assumption that a later step will,
for instance, eliminate common subexpressions. Moreover, for simplicity, many
rules generate subexpressions which can be proven to be unnecessary if column
properties are taken into account.

Consider for instance, the operators mkprod(r), prodleft(r) and prodright(r).
Given a relation r : [α−β], these construct a new keyspace γ identifying the
rows of table r . However, if r is one-to-many, then every row can be identified
by its tail and no expensive renumbering operations are necessary: if r has
type [α←β], we can take γ ⊂ β and put

mkprod(r) = r ,
prodleft(r) = converse(r),

prodright(r) = rtwin(r).

For example,

r
1 10
1 20
2 30

mkprod(r)
1 10
1 20
2 30

prodleft(r)
10 1
20 1
30 2

prodright(r)
10 10
20 20
30 30

64 CHAPTER 3. REALIZATION

**

!aprodleft() !personname

**

!aprodleft() **

!idunit

!aprodright()

!persons

atom< >

**

!dogname

!unit

!sethead()

**

!persons

!amkprod()

!cartprod()

!aprodright()!dogs !dogname

!selecttrue()

!and()

!amkprod()

!personyear

**

!aprodleft()

**

**

!aprodright()

atom< >

!dogyear

!aprodleft()

!eq()

!aprodleft()

**

!personname

pair< >

!eq()

**

bag< >

!prodleft()

!cartprod()

!idunit

!persons

**

!personname

!unit

!sethead()

!persons !dogs

!cartprod()

atom< >

**

!persons !dogs

!persons

!cartprod()

!dogs

!prodleft()

!cartprod()

!personyear

!prodleft() !personyear

**

pair< >

atom< >

**

!persons !dogs

!persons

!cartprod()

!dogs

!prodright()

!cartprod()

!dogyear

!prodright() !dogyear

**

**

!eq()

!persons

!eq()

!dogs

!persons

!cartprod()

!dogs

!prodleft()

!cartprod()

!personname

!prodleft() !personname

!prodleft()

**

**

!persons !dogs

!persons

!cartprod()

!dogs

!prodright()

!cartprod()

!dogname

!prodright() !dogname

**

**

!eq()

!and()

!eq()

!selecttrue()

!and()

!mkprod()

!selecttrue()

!prodleft()

**

!mkprod()

!persons !dogs

**

!cartprod()

!prodright()

!persons

!dogname

!dogs

!cartprod()

**

!prodleft() !personyear

**

**

!persons !dogs

!cartprod()

!prodright() !dogyear

**

!eq()

bag< >

!persons !dogs

!cartprod()

!prodleft() !personname

**

!persons !dogs

!cartprod()

!prodright() !dogname

**

!eq()

!and()

!selecttrue()

!persons !dogs

Figure 3.2: Parse trees of two rewritten Dodo expressions, one with abstract
composite keys, and one without. It is not hard to guess which one is harder to
debug.

3.4. THE DODO TYPE SYSTEM 65

In typical relational implementations, both converse and rtwin can be imple-
mented purely as table header manipulations and thus be evaluated in constant
time.

Notice, however, that the above is not completely type-safe. The definition
of mkprod in paragraph 61 requires the new type γ to contain precisely one
key for each row: mkprod(r) : [α←7 γ]. If we take γ = β as above, this is no
longer necessarily the case. From the perspective of the type system, the above
optimizations are only applicable if r : [α←7 β]. Obviously, it would be very
beneficial if the type system could be relaxed in such a way that it can handle
the above optimization even if r : [α←β]. That is the subject of the next
paragraph.

87 Subset typing. This and the next paragraph describe future work —
already partially realized — that elaborates some ideas described up to now.

To make better use of the optimization opportunities mentioned in the pre-
vious paragraph, it would be desirable to have a more fine-grained notion of
completeness than the one provided by the head- and tail completeness prop-
erties. We can attempt to better estimate which subset of a key type occurs
in a relation. For instance, the if then else construct, or more precisely, the
function bool2sum : B → 1 + 1, uses two column operations selecttrue() and
selectfalse() which split a key set α into two sets α1 and α2 for which a predi-
cate is true or false, respectively. Often, after some computation, the two key
spaces are later combined again into α. This is not hard to see: the keys are
split in order to compute the then-clause on α1 and the else-clause on α2, but
afterwards, they are recombined into a frame which contains all results of the if
then else expression. It would be very nice if Dodo could statically determine
that all keys in α occur again in this frame.

It is possible to do so if we introduce predicate annotations on key types.
Every time a choice is made out of the keys in a key space, a corresponding
predicate is assigned, which yields true for one set, and false for the other. Key
spaces can now be decomposed into subsets on which predicates or known to
true or false. For instance, if we denote the negation of p as p, we have

α = αp ∪ αp , αp ∪ αp = αp , αp ∩ αp = αp , and αp ∩ αp = ∅.

Moreover, we have distributivity:

αp ∩ (αq1
∪ αq2

) = αpq1
∪ αpq2

.

88 Unification of subset types. Until now, unification of types always
yielded a set of type equations. However, for subset types, it yields a set of
subset nullifications. Suppose we have α1 and α2 subsets of α, and at some

66 CHAPTER 3. REALIZATION

point, these types must be unified. If we can write α1 and α2 as unions of
disjoint subsets

α1 = αx1
∪ . . . ∪ αxn

∪ αy1
∪ . . . ∪ αyk

,

α2 = αx1
∪ . . . ∪ αxn

∪ αz1 ∪ . . . ∪ αzk ,

where the xi , yi and zi are different combinations of predicates p1, p1, p2, p2,
etcetera, and where the αxi

are in common between α1 and α2 while αyi
and

αzi are not, then

α1 = αx1
∪ . . . ∪ αxn

∪ αy1
∪ . . . ∪ αyk

= α2 = αx1
∪ . . . ∪ αxn

∪ αz1 ∪ . . . ∪ αzk

implies
α1 = αx1

∪ . . . ∪ αxn
= α2

and thus, αyi
= αzi = ∅ for all i . In other words, the relationship between

subsets can completely be characterized by listing sets of predicates of which
the conjunction is known to be always false.

Implementation-wise, keeping track of these sets can be done fairly straight-
forward using a tree structure on predicates. We expect this method to open the
door to much stronger optimizations than are possible using simple completeness-
flags.

3.5 The prototype

We have developed a prototype Dodo system to test our ideas on query flat-
tening. The prototype consists of a type checker, a rewrite engine, a collection
of type definitions and rewrite rules similar to Section 3.3, and an optional
graphical user interface (GUI).

89 Rewriting in the prototype. Syntactically, the prototype follows the
language described in Chapter 2. The user enters a query expression, either
fully at the nested level, e.g., Bag [. . .], or already partially rewritten towards
column expressions. The first step is the type inference step, in which type
information is attached to the abstract syntax tree (AST) of the expression. If
the type of the expression is not a function type, the query is first wrapped into
a constant lambda term, as explained in paragraph 39.

Then follows a series of iterations in which parts of the query are offered to a
list of rewrite rules. One of the matching rules is asked to perform a substitution
on the tree. If more than one rule matches, the user can interactively select in

3.6. SUMMARY 67

the GUI which of the rules is chosen. This facilitates experimentation. In
non-interactive mode, the leftmost substitution is chosen.

After each rewrite step, the intermediate result is (optionally) presented to
the user and (optionally) type checked again. Intermediate results can presented
textually, but also in graph format, as depicted in Figure 3.2. In the graph
format, it is possible to perform common subexpression elimination to improve
readability.

90 Rule verification for extension writers. A Dodo extension consists
of frame definitions, including rewrite rules to implement standard frame func-
tionality, declarations of operations, with rewrite rules implementing them in
a point-free manner, and generally also extensions at the column level, in the
form of new primitive data types and column operations. The Dodo framework
specifies relations between all these elements, but in practice, it may be hard
for the extension writer to keep track of it all.

In order to assist the extension writer in writing correct rewrite rules, our
prototype provides a mode in which the type inference mechanism verifies the
type after every rewrite step. A chang in type would indicate an incorrect rewrite
rule. This has been very useful in tracking down problems. A similar idea could
be applied at the column level, where the type system predicts properties such
as head-completeness or injectivity, which can be checked at run-time.

Most rewrite rules purely operate at the syntactical level. For example,
the rule exl ◦ pair〈F ,G〉 = F does not use type information. In the current
prototype such a rule is implemented simply by stating the two patterns, e.g.,
"exl .. pair<$f, $g>" and "$f". Though not currently implemented, it
is straightforward to type check such rules at rule insertion time, rather than
when the rule is applied. This, too, should aid the extension writer in building
a correct extension.

3.6 Summary

In this chapter we have examined the role of type information in Dodo. In
particular, we examined key space management. Key spaces are used in Dodo
to denote the domains of data functions. If a data function stores k values,
its domain should consist of k keys. This gives rise to a multitude of different
key spaces, which should be handled sufficiently abstract to allow for multiple
implementations, but expressive enough to handle the requirements of exten-
sion writers. In Section 3.2 we introduced column operators mkprod , prodleft ,
prodright , mksum, sumleft and sumright to deal with this.

We also gave concrete Dodo implementations of several common data struc-
tures used in the prototype. For rewriting, among others, the empty frame

68 CHAPTER 3. REALIZATION

operator, it is necessary to derive type information from the surrounding query.
We developed a type system for Dodo, and discussed how it could be improved
to allow more extensive optimization.

Chapter 4

Pathfinder

91 Pathfinder. Pathfinder [GST04, BGvK+06], now part of MonetDB/
XQuery, is a relational approach to XQuery processing. Using a clever rela-
tional encoding of XML documents, it compiles XQuery queries into efficient
relational algebra expressions, which it executes on a relational back-end, cur-
rently MonetDB. Boncz et al. [BGvK+06] report high performance and scala-
bility using this approach, querying documents up to 11 GB in size with time
scaling almost linearly with document size. The key to Pathfinder’s excellent
performance lies in the combination of its document representation, which allows
efficient, sort-free evaluation of XPath axis steps, and a technique called “loop
lifting” [GT04, GST04] which eliminates nested loop evaluation of for-let-where-
return (FLWOR) expressions in favor of efficient table-based bulk operations.

92 Query flattening. Being a compiler for queries over a nested model
(XML) to a flat model (a relational algebra), the Pathfinder approach is an
instance of query flattening (Chapter 1, paragraph 2). Therefore, as an example
of an independently developed full-blown real-world system, it is suitable for
validation of our approach. Validation questions are

1. Can Dodo’s core principles be observed in Pathfinder?

2. Can the Pathfinder approach be implemented as Dodo extensions?

3. With hindsight, would Dodo and its core principles been helpful in the
development of Pathfinder would they have been known at the time?

It turns out that several essential Pathfinder algorithms have equivalent coun-
terparts in Dodo, in particular loop lifting, which turns out to be the Pathfinder

69

70 CHAPTER 4. PATHFINDER

equivalent of how nested scopes are eliminated in Dodo using distribution func-
tions D∗ (Section 2.5.3). Moreover, we show how, once the Pathfinder-specific
data types are implemented as Dodo extensions, we get loop lifting and the
associated book-keeping for free.

4.1 Pathfinder in a nutshell

93 Essence. The essence of Pathfinder lies in its encoding of XML trees and
item sequences. The tree encoding enables efficient XPath axis traversal, and
the sequence encoding enables efficient processing of nested XQuery expressions.
Following Grust, Sakr and Teubner [GST04], we begin with the data structures
and see how the algorithms follow naturally from them.

94 Tree encoding. The tree encoding used in Pathfinder [GvKT03] is
based on the pre- and post-order rank of the nodes in the tree. In summary,
this means that we record the order in which a linear scan through an XML
document encounters the open and closing tag of each element. Storing nodes
by pre-rank, post-rank and level allows efficient positional comparisons between
nodes. For instance, if node n2 is a descendant of node n1, that means that
when serialized, n2 starts later and ends earlier, i.e.,

n1.pre < n2.pre ∧ n2.post < n1.post . (4.1)

See figure 4.1 for an example. The actual MonetDB/XQuery implementation
uses a scheme based on pre-rank, size of subtree, and level, which is equivalent
due to the equation

n.pre + n.size = n.post + n.level ,

but has several implementation advantages. For presentation purposes, however,
we often use the pre/post scheme.

Using conditions such as (4.1) as join conditions, one can do XPath axis
traversal in bulk. In the XML tree navigation language XPath, the tree is
traversed along XPath axes such as descendant , child , parent or following . As-
suming the document is represented as a pre/post table T , and that we have
a table t containing the pre-numbers of a set of nodes, called the context node
set, the set of nodes reachable from nodes in t along axis s can be computed
using the join t ./s T , where ./s uses an equation such as (4.1) as a selection
criterion.

Notice that the result can be used as the input to another join step: to find
the nodes reachable through a path ./step1/ . . . /stepn from an initial context
node set t , one simply computes t ./step1

· · · ./stepn
T .

4.1. PATHFINDER IN A NUTSHELL 71

<a> <c/><d/> <e><f/></e>

(a)
0a5

1b2

2c0
3d1

4e4

5f3

node pre post level
a 0 5 0
b 1 2 1
c 2 0 2
d 3 1 2
e 4 4 1
f 5 3 2

a

b

c
d

e

f

0 1 2 3 4 5

0
1
2
3
4
5

(b) (c) (d)

Figure 4.1: (a) an XML document; (b) the document, drawn as a tree, with
pre-rank indicated by superscripts and post-rank by subscripts; (c) tabular rep-
resentation of the pre- and post-ranks; (d) ranks used as coordinates in the
pre/post plane. The dashed lines indicate how comparisons on pre/post rank
distinguish between ancestors, descendants, preceding and following nodes of
node b.

95 Staircase join. Axis steps can be regarded as region queries in the
pre/post plane, which can efficiently be computed on standard relational databases
using a B -tree index [Gru02]. It is, however, possible to do better if we extend
the database with tree-aware join algorithms. The staircase join [GvKT03]
is a family of specialized join algorithms for join conditions similar to (4.1),
which take the tree shape of the underlying data into account in order to
avoid the costly sorting and duplicate removal phases required by XPath se-
mantics [FMM+05].

The staircase join takes two arguments. The first is a table t of pre-numbers
denoting the context node set. The other is the document table T consisting
of pre/post/level tuples and other information. Both tables are assumed to
be ordered in document order, i.e., on the pre-attribute. The output of the
staircase join operation for an axis s is a new table of pre-numbers, listing the
nodes in T reachable from t along axis s.

How staircase joins take the tree shape into account is illustrated in figure 4.2.
In case (a), context node p completely dominates q , that is, q/descendant ::⊂
p/descendant . Thus, q can safely be omitted (pruned) from the context. Omit-
ting dominated nodes gives rise to the characteristic staircase shape from which
the algorithms derive their name. In case (b), no node can simultaneously have
both p and q as an ancestor. Thus, during a simultaneous sequential scan of
both the context set and the node table (going from left to right in the pre/post

72 CHAPTER 4. PATHFINDER

p

q

(a)

p

q

∅

(b)

p
v

q

∅

scan skip scan

(c)

Figure 4.2: Tree awareness in the staircase join for the descendant axis step:
(a) pruning, (b) partitioning and (c) skipping. Nodes in the context set are
drawn closed, other nodes, e.g., v in case (c) are drawn open.

plane), only a single context node needs to be considered at a time. Clearly, the
end result is again sorted in document order and without duplicates.

Evaluating condition (4.1) using a “normal” join would in the descendant
case not generate duplicates either, but might unnecessarily touch nodes in the
document table because it is not aware that the descendants of p and q never
overlap. Along other axes, partitioning does help eliminate duplicates.

Finally, in case (c) we see that irrelevant parts of the document table can
be skipped. On encountering p in the context, the nodes following p in the
document table are copied to the output table until the first node with a higher
post-rank than p is found. In the diagram, this is v .

As v is a follower node of p, it has no common descendants with p. All
other nodes between v and q are guaranteed to also follow p. Therefore, on
encountering v , all tuples in the document table up to the next context node q
can be skipped, and because the document table is ordered on pre-rank, finding q
can be done very efficiently.

The use of staircase joins leads to impressive performance improvements. For
instance, the number of nodes touched by a descendant step is |context |+|result |,
which is the absolute minimum: In order to generate the result, all nodes in
it have to be touched, and in order to determine the result, the whole input
context sequence has to be processed.

In this example, we concentrated on the descendant step, but for the other
axis steps, similar properties can be derived. Implementations of staircase joins
exist in MonetDB [BGvK+06], currently the preferred Pathfinder back end, but
also for the open source RDBMS PostgreSQL [MGvKT04].

4.1. PATHFINDER IN A NUTSHELL 73

96 Loop lifting. The XQuery language is fully composable. That is, every
expression may be used as a building block for a larger expression. Pathfinder is
an XQuery compiler. It takes an XQuery query and compiles it to a relational
algebra query. In doing so, it takes full advantage of composability. Translation
of a subexpression E takes place in an “iteration context” determined by the
enclosing for expressions (scope). By iteration context we mean the sequence of
all variable bindings for which the expression is to be evaluated. For example,
in the query

for $x in (10,20) for $y in (100,200) return $x+$y,

which yields the sequence (110, 210, 120, 220), the outer for is evaluated once,
the inner for is evaluated twice, and the return clause is evaluated four times,
each time with other bindings for $x and $y . The foundation of Pathfinder’s
compilation strategy is that every language construct which affects control flow,
such as for and if, does so by manipulating a tabular representation of the
iteration context. Before we make that more precise, we first consider item
sequences.

97 Item sequences. In the XQuery 1.0 and XPath 2.0 data model (XDM)
[FMM+05], every expression evaluates to a sequence of items. Such an item
is either an atomic value, such as a string or a number, or it is a node in an
XML tree. The semantics of XDM are such that item sequences are never
nested: expressions are considered to yield a stream (x1, x2, . . .) of items. As
a consequence of this stream-based world view, an individual item x is always
considered equivalent to the singleton stream (x).

In Pathfinder, every item sequence is represented as a table consisting of
ordinal/item pairs. The ordinals are simply numbers indicating the position of
the corresponding item in the stream. The items are strings and numbers in the
case of atomic items, or pre-rank numbers in the case of an XML node. Thus,
in the example query above, the result of evaluating the expression (10,20) is
a table

(10,20)

0 10
1 20

98 Loop lifting, cont’d. The point of loop lifting is that when Pathfinder
generates code, it does not generate code which performs a single evaluation
of that expression, it generates code which performs the evaluations for all
iterations at once, in parallel. The compiled version of the expression takes
as an argument a table of all circumstances in which it will be evaluated, and
returns a table containing all results. For item sequences, these tables consist

74 CHAPTER 4. PATHFINDER

not of pairs, but of triples (iter , ordinal , value). The iter column identifies the
iteration context in which a tuple was generated. We explain loop lifting in
more detail by means of a few examples.

99 Example 1, for . . . in. We will construct tabular representations for
the intermediate stages in the evaluation of the query

for $x in (10,20) for $y in (100,200) return $x+$y. (4.2)

The tabular representations consists of tuples (iteri , pos, item). The pos and
item fields are as described in the previous paragraph. The iter fields are used
to tell apart the different parallel evaluations of the expression. The first step
is to evaluate the subexpression (10,20). In this step, there is only a single
iteration (parallel evaluation) going on, numbered 0:

(10,20)

iter0 pos item
0 0 10
0 1 20

(4.3)

The for $x in construct takes this table and constructs a table with all bind-
ings for $x for each iteration. This can be accomplished using renumbering,
which turns the single iteration 0 containing the sequence (10, 20) into two it-
erations, containing the singleton sequences (10) and (20). At the same time,
it constructs a mapping table between iter1 and iter0 for later reference.

iter1 iter0
0 0
1 0

$x

iter1 pos item
0 0 10
1 0 20 (4.4)

We see that there are now two iterations, with different bindings for $x. In the
next step, the subexpression (100,200) is evaluated in both iterations at the
same time, resulting in:

iter1 iter0
0 0
1 0

./

(100,200)

iter0 pos item
0 0 100
0 1 200

=

(100,200)

iter1 pos item
0 0 100
0 1 200
1 0 100
1 1 200

(4.5)

We clearly see how iter1 distinguishes between the two sequences, while the
(unlabelled) pos column distinguishes items within sequences. The for $y in

4.1. PATHFINDER IN A NUTSHELL 75

construct uses this to construct iter2 and a new mapping table, which we use
to translate $x to iter2:

iter2 iter1
0 0
1 0
2 1
3 1

$y

iter2 pos item
0 0 100
1 0 200
2 0 100
3 0 200

$x

iter2 pos item
0 0 10
1 0 10
2 0 20
3 0 20

(4.6)

Finally, $x+$y can now be computed using an efficient loop lifted version of the
addition operator. The result can be brought back to iter0 by joining with the
mapping tables and renumbering the pos column:

$x+$y

iter2 pos item
0 0 110
1 0 210
2 0 120
3 0 220

for $x in ... return $x+$y

iter0 pos item
0 0 110
0 1 210
0 2 120
0 3 220

(4.7)

This yields the required sequence (110, 210, 120, 220).

100 Example 2, if . . . then. Other control flow, such as if then else,
is implemented similarly. Consider the query

for $x in (10,20)

for $y in (100,200)

let $sum := $x+$y

return

if ($sum mod 3 = 0)

then ($sum, " is a triple. ")

else ($sum, " is no triple. ")

This query yields the result “110 is no triple. 210 is a triple. 120 is a triple.
220 is no triple.” The first part of the evaluation goes exactly the same as in
paragraph 99. Then, the branch condition is evaluated, and the context table
is split in two: iter2a, where the condition is true, and iter2b, where it is false.
Now, the then-clause can be evaluated in the true context, and the else-clause

76 CHAPTER 4. PATHFINDER

in the false context:

$sum mod 3=0

iter2 pos item
0 0 false
1 0 true
2 0 true
3 0 false

then . . .
iter2a pos item

1 0 210
1 1 "is a"

2 0 120
2 1 "is a"

else . . .
iter2b pos item

0 0 110
0 1 "is no"

3 0 220
3 1 "is no"

(4.8)
The final result is obtained by merging the tables and translating back from
iter2 to iter0.

101 Loop lifted staircase join. Axis steps often occur inside loops
and benefit similar to the addition operator from implementing a special loop
lifted version of the staircase join. MonetDB/XQuery’s loop lifted staircase
join [BGvK+06] applies the axis step not to a single context node sequence,
but to all context node sequences of all iterations simultaneously. It retains
the important property that it needs at most a single sequential scan over the
document table to do so. Hence, tree navigation is effectively transformed into
a join.

102 Performance benefits. Especially in the presence of large volumes of
data, the loop lifted version of the addition operator can be orders of magnitude
faster than repeated application of the normal operator. Loop lifted operators
are bulk operators. Rather than being invoked again and again for every ar-
gument, the loop lifted addition operator is invoked once, with two streams of
numbers as arguments, and produces another stream of numbers as the result.
Streaming access means predictable memory access patterns and fewer branch
mispredictions, resulting in a huge performance boost. The same holds for all
loop lifted operations.

This performance boost is very noticable even in comparisons between rela-
tional databases. Profiling experiments [BZN05] with MySQL show that even
during a simple sequential table scan, the database kernel spends only about
10% of its time in the functions which do the actual work, in this experiment,
multiplication integers. The rest of the time is spent on looking up fields in
records and other overhead. MonetDB, on the other hand, stores its data in
simple, array-like structures, requiring nothing more than a pointer increment
to look up the next number. The result is that on average, MonetDB spends 3
CPU cycles per number pair, compared to 49 for MySQL. Obviously, for sys-
tems supporting more complex data structures than tables, the difference will
be even larger.

4.2. PATHFINDER EXTENSION TO DODO 77

Loop lifting allows Pathfinder to evaluate subexpressions in bulk, replacing
tree navigation by table manipulation and joins. In fact, some of the most
frequently used table manipulations are (i) replacing a column, filling it with
a densely increasing sequence of integers, (ii) replacing all values in a column
with a constant, usually 0. It is interesting to notice that in MonetDB, such
operations can be done in constant time, simply by manipulating the table
header. Many SQL based platforms offer similar functionality in the form of
the OLAP extension RANK/DENSE RANK [GST04] which, though probably not as
cheap as MonetDB, can still be evaluated quite efficiently.

103 Conclusion. Pathfinder is an example of a system where choosing
a suitable bulk oriented data representation, in this case the pre/post plane,
makes a huge difference in the efficiency of algorithms. The classic staircase
join takes advantage of the fact that we often wish to traverse an XPath axis
not from one context node, but from a set of context nodes. The loop lifted
staircase join generalizes this further, traversing the axis for many context node
sets at once. Allowing clever extension writers to pick such a data representation
while still allowing convenient item-at-a-time style querying at the top level is
exactly the motivation behind Dodo.

The most important parallel between Pathfinder and Dodo is loop lifting.
The core principle of Dodo is to decompose a data type into a flattened repre-
sentation of a collection, and to enable vectorized execution of query operators.
Dodo achieves this by rewriting the query in point-free form, which introduces
bulk operations on complex data, and mapping the complex bulk data to flat-
tened storage structures to enable vectorization. Loop lifting in Pathfinder is
very similar to the transformation of queries to point-free form and the decom-
position into flat operators proposed in Dodo for general data types.

4.2 Pathfinder extension to Dodo

Notice that the above way of storing XML trees does not involve nested data
types per se, which are the focus of Dodo. It is, however, a clever way of storing
nested data in a flat way and translating queries to the flattened representation.
One of the major points of the multi-model architecture and Dodo is that it
explicitly puts the mapping from nested data to flat data in the hands of the
extension writer, thus enabling the programmer to use a flattened representation
which is very different from the conceptual data model. If the mapping would
have been automatic, one would most likely end up with XML trees represented
as a bunch of linked objects, with all the performance problems that entails.

104 New frames. In this section we consider how Pathfinder data structures

78 CHAPTER 4. PATHFINDER

can be implemented in Dodo, and we look at how Dodo flattens XQuery queries.
We introduce two new data types with their associated frames:

xmlnode〈〉 : ν → NODE and seq〈〉 : α→ Seq X .

The NODE type is an abstract type encoding all information about a single
XML tree node, including its relationship with other nodes. Notice that a
NODE is a specific node in the XML tree graph, rather than a whole subtree.
To clarify the distinction, a node has parents and children, whereas a tree has
subtrees and enclosing trees. The xmlnode〈〉 frame maps keys to nodes. We
usually use the type letter ν (“nu”) for node keys. All nodes a node is related
to in any way are understood to live within the same xmlnode〈〉 frame.

The seq〈〉 frame represents a mapping from keys to sequences of values. It
is similar to the list〈〉 and bag〈〉 frames of Chapter 3, but has explicit support
for the pos() position operator.

105 Iteration context. XQuery expressions are defined [BCF+05] to eval-
uate to a sequence of items, where items are either atomic items or nodes. The
iteration context tables we encountered in the section about loop lifting are in
Dodo represented as frames of type α → Seq(SS + NODE). In this type, the
keys α function as the iteration counter in the context table. To every itera-
tion (α) corresponds a sequence (Seq) of items (SS + NODE), which are either
atomic values, here assumed to be strings (SS), or nodes (NODE).

As a consequence of the type structure α→ Seq(SS + NODE), the result of
evaluating an XQuery query will have the frame structure

seq〈. . . , either〈atom〈. . .〉, xmlnode〈. . .〉〉〉,

where seq〈〉 represents Seq, atom〈〉 denotes the atomic items and xmlnode〈〉
denotes the XML nodes in the sequence.

4.2.1 The seq〈〉 frame

The seq〈〉 frame is similar to the list〈〉 frame of Chapter 3, except that our
implementation carries an extra binary relation to store ordinals in.

106 Frame definition. The seq〈〉 frame has type rule

seq〈[α 7↔7 !], [α←β], [β→N], β → X 〉 : α→ SeqX .

As with lists, in seq〈d , r , p,F 〉, d gives the domain of the frame, r gives the
relation between sequence identifiers and items, p gives the position of every
item in the sequence, and F gives the items themselves. The result of looking up

4.2. PATHFINDER EXTENSION TO DODO 79

key k in a seq〈d , r , p,F 〉 is the sequence of items such that for every (k , k ′) ∈ r ,
item F (k ′) occurs on position p(k ′). The required rewrite rules (Section 2.6)
are as follows:

empty = seq〈emptycol , emptycol ,

emptycol , empty〉,

dom seq〈d , r , p,F 〉 = d ,

r ′ ∗ seq〈d , r , p,F 〉 = seq〈twin(r ′ ∗ d),mkprod(r ′ ∗ r),

prodright() ∗ p,F 〉,

seq〈d1, r1, p + 1,F1〉 t seq〈d2, r2, p2,F2〉 = seq〈d1 ∪ d2,mksum(r1, r2),
sumleft() ∗ p1 ∪ sumright() ∗ p2,
sumleft() ∗ F1 ∪ sumright() ∗ F2〉

Seq f ◦ seq〈d , r , p,F 〉 = seq〈d , r , p, f ◦ F 〉

DSeq ◦ pair〈H , seq〈d , r , p,F 〉〉 = seq〈d , r , p, pair〈r∪ ∗H ,F 〉〉

zeroSeq ◦ F = seq〈domF , emptycol ,

emptycol , empty〉

unitSeq ◦ F = seq〈domF ,domF ,

settail(domF , 1),F 〉

unnest ◦ seq〈d1, r1, p1, seq〈d2, r2, p2,F 〉〉 = seq〈d1, r1 ∗ r2,

newpos(r1, r2, p1, p2),F 〉

The standard frame operations and the implementations of the monad operators
are fairly standard. In the type signature, we have chosen r to be injective (tail-
distinct), and therefore the item identifiers suffice as row identifiers for r . Thus
we do not need mkprod() operations in the rules for DSeq and unnest . However,
in r ∗ seq〈〉 we need to create new inner keys to make sure they are unique
(see the example later on). In unitSeq, which constructs singleton sequences, we
simply use sequence identifiers as item identifiers.

107 The newpos() operator. The only new column operator needed is the
newpos operation, which makes up new ordinals. This essentially entails cluster-
ing r2 on α (through r1) and then sorting r2 first by the ordinals corresponding
to β (through p1) and then by those of γ (through p2). Then, the new ordinals
can be assigned using a simple counter which is reset at every group boundary.

At first sight, newpos sounds like a very expensive operation. However, in
practice the tuples in the binary relations are stored in a certain order, and we
can exploit that to make newpos cheaper. As is clearly visible in the loop lifting
examples in paragraph 99 and further, r1 and p1 are already ordered according

80 CHAPTER 4. PATHFINDER

to β, and the ordering of the ordinals agrees with that ordering. Likewise, r2

is already ordered by β and γ, and p2 is ordered by γ with the order of the
ordinals again agreeing. Thus, in practice the group and order phases will be
unnecessary, and newpos will amount to a simple grouped dense ranking oper-
ation, exactly corresponding with the one already used in MonetDB/XQuery,
which has acceptable cost.

108 Example rewriting. Plugging the definition of seq〈〉 into the rules
for scope elimination in Section 2.5.3 give something remarkably close to the
loop lifting demonstrated in Section 4.1. It is not hard to imagine how XQuery
query (4.2) maps to the Dodo query

λw • Seq [x + y | x ← tens, y ← hundreds],

where Seq is the monad comprehension belonging to Seq. Then,
[[
λw • Seq [x + y | x ← tens, y ← hundreds]

]]

= { comprehension syntax }
[[
λw • unnest (Seq (λx • Seq (λy • x + y) hundreds) tens)

]]

= { w does not occur free in the expression }

unnest ◦ Seq
[[
λx • Seq (λy • x + y) hundreds

]]
◦
[[
λw • tens

]]

= { Scope unnesting (Equation 2.6), set tens ′ = (λ • tens) }

unnest

◦ Seq
(
Seq

[[
λz • (λy • exl z + y) (exr z)

]]
◦DSeq ◦

[[
λx • (x , hundreds)

]])

◦ nest ′

= { hundreds ′ = (λ • hundreds), simplify }

unnest ◦ Seq
(
Seq (+) ◦DSeq ◦ (id O hundreds ′)

)
◦ nest ′

= { expand Seq functor }

unnest ◦ Seq Seq (+) ◦ Seq DSeq ◦ Seq (id O hundreds ′) ◦ nest ′.

For comparison with the example in Section 4.1, we now substitute seq〈〉
frames for tens ′ and hundreds ′, and evaluate the expressions

A1 = tens ′,

A2 = Seq (id O hundreds ′) ◦A1,

A3 = SeqDSeq ◦A2,

A4 = Seq Seq (+) ◦ A3,

A5 = unnest ◦A4.

4.2. PATHFINDER EXTENSION TO DODO 81

We start with the frames tens ′ and hundreds ′, where hundreds ′ is very similar
to tens ′, except that it uses internal key space β rather than α.

A1 = tens ′ = seq〈 d1

† †
, r1
† α1

† α2

, p1

α1 1
α2 2

, atom〈 f1
α1 10
α2 20

〉〉. (4.9)

In the first step, every number in the sequence is transformed into a num-
ber/sequence pair. The hundreds ′ frame has domain 1 = {†}, so we use frame
translation c ∗ F to translate it to the domain {α1, α2}.

A2 = seq〈d1, r1, p1, pair〈atom〈f1〉, settail(f1, †) ∗ hundreds ′〉〉

= seq〈d1, r1, p1, pair〈atom〈f1〉,

α1 †
α2 †

∗ seq〈 d2

† †
, r2
† β1

† β2

, p2

β1 1
β2 2

, atom〈 f2
β1 100
β2 200

〉〉〉〉

= seq〈d1, r1, p1, pair〈atom〈f1〉,

seq〈 d ′
2

α1 α1

α2 α2

, r ′
2

α1 γ1

α2 γ2

α2 γ3

α2 γ4

, p′
2

γ1 1
γ2 2
γ3 1
γ4 2

, atom〈 f ′2
γ1 100
γ2 200
γ3 100
γ4 200

〉〉〉〉

Then, the seq〈〉 and the pair〈〉 frame are exchanged using the DSeq operator. It
translates f1 to the γ keyspace as f ′

1 = r ′∪
2 ∗ f1.

A3 = seq〈d1, r1, p1, seq〈
d ′
2

α1 α1

α2 α2

, r ′
2

α1 γ1

α2 γ2

α2 γ3

α2 γ4

, p′
2

γ1 1
γ2 2
γ3 1
γ4 2

,

pair〈atom〈 f ′1
γ1 10
γ2 10
γ3 20
γ4 20

〉, atom〈 f ′2
γ1 100
γ2 200
γ3 100
γ4 200

〉〉〉〉

Now, Seq Seq (+) uses a loop lifted addition operator to add the numbers.

A4 = seq〈d1, r1, p1, seq〈
d ′
2

α1 α1

α2 α2

, r ′
2

α1 γ1

α2 γ2

α2 γ3

α2 γ4

, p′
2

γ1 1
γ2 2
γ3 1
γ4 2

, atom〈 f ′1 ⊕ f ′2
γ1 110
γ2 210
γ3 120
γ4 220

〉〉〉

82 CHAPTER 4. PATHFINDER

And finally, unnest removes the nested seq〈〉 frames and introduces a new num-
bering.

A5 = seq〈d1,
r1
† α1

† α2

∗ r ′
2

α1 γ1

α2 γ2

α2 γ3

α2 γ4

, newpos
γ1 1
γ2 2
γ3 1
γ4 2

, atom〈 f ′1 ⊕ f ′2
γ1 110
γ2 210
γ3 120
γ4 220

〉〉

= seq〈 d1

† †
, r1 ∗ r ′

2

† γ1

† γ2

† γ3

† γ4

, newpos
γ1 1
γ2 2
γ3 3
γ4 4

, atom〈 f ′1 ⊕ f ′2
γ1 110
γ2 210
γ3 120
γ4 220

〉〉

109 Recognizing loop lifting. If we now compare the expressions above
to those in Section 4.1, they turn out to be very similar. For instance, the
frame tens ′ corresponds to the table representation of (10, 20) in equation (4.3),
except for the use of more fancy key notation such as α1 and †. In the next step,
A2, we introduce the frame hundreds ′, but translate it to the domain {α1, α2},
which is exactly what we see happen in equation (4.5). Then, in A3, f1 is
translated to the scope of f2. The frame definition of r ∗ seq〈〉 states that this
is done by translating with r∪

2 . Thus, the frame structure of the seq〈〉 frame
helps keep track of the mapping between scopes, which we explicitly kept track
of using the (iter2, iter1) tables in the loop lifting example. In step A4, the
rule for the Seq functor makes it clear that (+) should be applied to the pair〈〉
frame inside the seq〈〉 frames. Rewrite rules for + on atom frames introduce the
loop lifted addition operator ⊕. At this point, we have calculated the required
numbers, but they are still inside a nested sequence. In equation (4.7), this is
visible because they are in scope iter2. The unnest operator joins r1 and r2 to
bring them to the outer scope. It also introduces new position numbers using
newpos.

In figure 4.3, we show A5 both in frame-form and in a tabular representation
similar to equation (4.7). It turns out that the keys γ remaining in the frame
representation correspond to the implicit row-ids in the tabular form.

4.2.2 The xmlnode〈〉 frame

110 Decomposition in Pathfinder. MonetDB/XQuery currently decom-
poses its XML document collection into 12 binary relations [BGvK+06]:

4.2. PATHFINDER EXTENSION TO DODO 83

A5 = seq〈 d1

† †
, r1 ∗ r ′

2

† γ1

† γ2

† γ3

† γ4

, newpos
γ1 1
γ2 2
γ3 3
γ4 4

, atom〈 f ′1 ⊕ f ′2
γ1 110
γ2 210
γ3 120
γ4 220

〉〉

$x+$y

(rownum) iter0 pos item
(γ1) † 1 110
(γ2) † 2 210
(γ3) † 3 120
(γ4) † 4 120

Figure 4.3: Comparison between the final seq〈〉 frame of paragraph 108 and a
tabular represention similar to (4.7).

positional info
pre size
pre level
pre frag

node info
pre prop
pre kind
qn ns
qn loc
prop text
prop com
prop ins
prop tgt

attribute info
attr own
attr qn
attr prop

The positional information pertains to the pre/post plane. Node information
means information about the kind of node, e.g., element or comment, its name
spaces, its name or text content, etc. Attributes are stored separately in the
attr ∗ tables.

The pre frag relation is used to separate the node collection into fragments.
Fragments are connected components of the XML node graph. There are two
kinds of fragments: named fragments and anonymous fragments. Every docu-
ment in the store is a distinct fragment, because nodes within a document are
connected through axis steps, whereas nodes from different documents are not
so connected. We call stored documents named fragments because they can be
reached through their name: doc("banana.xml"). Anonymous fragments are
fragments which do not have an external origin. They are created during query

84 CHAPTER 4. PATHFINDER

evaluation as a result of element construction, e.g.,

<a>{ for $x in (10,20) return {$x} }

111 The xmlstore〈〉 frame. In Dodo, we use frames rather than a naming
convention to organize the relations of the decomposed document collection.
For convenience, we introduce xmlstore〈〉, which simply groups together the
twelve relations that make up the document store. It is not a proper frame
because it does not provide rewrite rules for frame translation and other required
operations.

For simplicity, we ignore name spaces and the special encoding of attributes;
we simply regard attributes as nodes with a special name. In Pathfinder, the
kind and prop columns are used to distinguish several types of nodes: text

nodes, element nodes, comment nodes, etc. In Dodo, we use an either〈〉 frame
(sum type) to encode this distinction, but also ignore the matter occasionally
for simplicity.

112 The xmlnode〈〉 frame. Our xmlnode〈〉 frame contains two xmlstore〈〉
frames, one for the named and one for the anonymous fragments. The separation
of named and anonymous fragments is important in the implementation of the
frame union operator t.

This is the structure of the xmlnode〈〉 frame:

xmlnode〈prea , pren , storea , storen ,meta〉.

Here, storea and storen are xmlstore〈〉 structures containing the anonymous
and the named document stores. Although semantically, map keys to individual
nodes, the xmlnode〈〉 frame carries around the whole document store within its
frame structure. The reason is that in paragraph 104, we stated that

The NODE type is an abstract type encoding all information about
a single XML tree node, including its relationship with other nodes.

The relationship of a node with other nodes is encoded as pre/post information
in the xmlstore〈〉 structures.

The prea and pren columns provide the mapping from external node identi-
fiers to pre-numbers. We will generally assume that the pre-numbers in storea

are different from those in storen . As the query navigates the documents, prea

and pren vary; the pre relations point out the “active” nodes in the store, while
storea and storen contain all nodes and remain unchanged during navigation.
The meta component is used to record meta-information such as the names of
the fragments in storen . It is used, among others, by the doc() function but
will be ignored from now on.

4.2. PATHFINDER EXTENSION TO DODO 85

It is important to understand the distinction between xmlnode〈〉 and xmlstore〈〉.
The xmlstore〈〉 structure contains information about a complete collection of
XML trees: it contains positional and node information about all nodes in all
trees. On the other hand, an xmlnode〈〉 frame represents a selection of nodes out
of an xmlstore〈〉. For instance, consider a frame of type α→ Seq(SS + NODE)
happening to contain only strings and no nodes. Because it contains no nodes,
the domain of the xmlnode〈〉 frame inside the seq〈〉 is empty: there are no nodes
in the sequences, only strings. However, the xmlstore〈〉 frame storen still con-
tains the whole tree collection, because in a later step, the query might invoke
the doc() operator to retrieve a document from it.

The frame structure of the type α → Seq(SS + NODE) resulting from
XQuery expressions was already sketched at the end of paragraph 105, but
can now be given in more detail:

seq〈. . . , either〈atom〈. . .〉, xmlnode〈. . . , xmlstore〈. . .〉, xmlstore〈. . .〉〉〉〉,

The seq〈〉 frame contains item keys, which the either〈〉 frame maps tot the
atom〈〉 frame if they are strings, and to the xmlnode〈〉 frame if they are nodes.
The pre columns in the xmlnode〈〉 frame are used to map the item keys to a
pre-number, which can be used to look up information about the node in the
xmlstore〈〉 structure.

113 Operations on xmlnode〈〉. Here we sketch the implementation of the
required frame operations for the xmlnode〈〉 frame:

dom xmlnode〈prea , pren , . . .〉 = !twin(prea ∪ pren),

r ∗ xmlnode〈prea , pren , . . .〉 = xmlnode〈r ∗ prea , r ∗ pren , . . .〉,

empty = xmlnode〈∅, ∅, empty , storen ,meta〉,

xmlnode〈pa
1 , pn

1 , sta1 , stn ,meta〉 t
xmlnode〈pa

2 , pn
2 , sta2 , stn ,meta〉 = xmlnode〈pa

3 , pn
1 ∪ pn

2 , sta3 , stn ,meta〉,

where in the last rule we abbreviated pre to p and store to st , and we take prea
3

and storea
3 as described below.

In the first two rules, we see how dom and r∗ only influence pre and do not
reach the xmlstore〈〉 structures, hence no expensive renumbering of the whole
collection. In the union rule, we still need to describe prea

3 and storea
3 . We do

not give formulas because in this case, they obscure more than they clarify.
A typical use of the t operator is to implement if then else. After evaluation

of the then and the else branch, the results are merged back into a single
frame using t. We know that that storen is identical in both xmlnode〈〉 frames,
because it is not updated during query evaluation. If neither of the branches

86 CHAPTER 4. PATHFINDER

has created new nodes, storea will also be identical. In case node creation does
occur, the storea structures will be different and need to be merged. When the
pre numbers used in storea

1 and storea
2 overlap, this may involve renumbering.

114 Implementing doc(). The doc() function maps document names to
the root node of the corresponding fragment. It takes one argument, which is
expected to be singleton sequence containing a string. We rewrite

doc ◦ seq〈. . . , either〈atom〈dname〉, xmlnode〈. . . storen ,meta . . .〉〉〉,

where meta contains the column frag name, into

seq〈. . . , either〈empty , xmlnode〈∅, dname ∗ frag name, . . . , storen ,meta, . . .〉〉〉.

In other words, we drop the names and create a new pren column out of dname
and frag name. It is not necessary to actually copy the documents out of
storen , we just insert references to them into the pren column. Any anonymous
fragments mentioned in the argument sequence are now unreachable, so storea

is dropped.

115 Implementing axis steps. XPath axis steps navigate from nodes to
other nodes. Thus, they affect only pren and prea . Because XPath expressions
never leave the fragment, the path expression can be evaluated in parallel for
prea against storea and pren against storen . Thus, in the rest of this paragraph
we simply refer to pre and store.

An axis step maps a node to a node set. After evaluating the first step in an
expression consisting of several steps, the rest of the path is evaluated for every
node in the result, and the result of the path expression is the union of the re-
sulting node sets. In an XQuery context, path expressions yield node sequences,
consisting of the items in the node set, ordered in document order. The final
step in a path expression may produce non-node results, e.g., fn:string(n),
in that case, the items are ordered according to the order of the corresponding
node.

We implement path expressions as a chain of item sequence transformations.

e/step1::test1/. . . /stepn ::testn

simply as a chain of operations:

FILTERSeq (test ′n) ◦ stepn ◦ · · · ◦

FILTERSeq (test ′1) ◦ step1 : Seq(SS + NODE)→ Seq(SS + NODE)

applied to expression e. In this expression,

FILTERSeq p = unnestSeq ◦ Seq (λn • if (p n) then unitSeq n else zeroSeq)

4.3. CONCLUSION 87

is a function which eliminates items which do not match predicate p from a se-
quence, and the test ′i are Dodo translations of the XPath tests expressions testi .

The steps are implemented using loop lifted stair case joins, using the pre
column as the context node set and store as the document table. The iter
argument to the loop lifted staircase join is provided using the sequence to item
relation r of the seq〈〉 frame. Notice that the arguments to the filters are lambda
terms which can be loop lifted according to the normal rewrite rules.

4.3 Conclusion

In this chapter, we have looked at XQuery/MonetDB (Pathfinder) as an illus-
tration of query flattening, and as a specialization of the Dodo approach.

Pathfinder uses a well-chosen mapping from nested (XML) data model to
flat relational model, and compiles XQuery queries into equivalent relational
algebra queries at the flattened level. In doing so, it benefits greatly from loop
lifting. Loop lifting is a translation technique replacing nested-loop query plans
by table manipulations. Compiled expressions work on a iteration context table
which contains all variable bindings the expression is evaluate with. The result
is a table containing all answers, which can be fed into subsequent expressions.

Experimental results with Pathfinder demonstrate that many-at-a-time pro-
cessing such as introduced by loop lifting can improve efficiency by orders of
magnitude. One explanation for this can be found in the properties of mod-
ern computer architectures. Physical operators which process multitudes of
operands in a single operation often display significantly better cache behaviour
and suffer less branch misprediction penalties than nested-loop iteration. The
other is that many-at-a-time operations have the opportunity to exploit rela-
tions between its arguments. For instance, the staircase join saves considerable
work by pruning the context node sequence (figure 4.2).

These concerns are precisely the driving motivation behind Dodo. Regarding
Question 1 of paragraph 92, we observe very similar query rewriting strategies in
Pathfinder and Dodo, but where Pathfinder focusses on two fundamental data
structures, item sequence and pre/post representation, Dodo is concerned with
flattening complex data structures in general.

In this chapter we have shown how Pathfinder’s fundamental data struc-
tures can be implemented as Dodo extensions (Question 2), and how, given
an implementation for the sequence type, the loop lifting in Pathfinder arises
automatically as a consequence of Dodo’s general rules for dealing with nested
scopes. This in itself may be of interest to seasoned Pathfinder developers, but
it also serves as a validation of the Dodo approach. The success of loop lifting
in Pathfinder demonstrates that Dodo’s scope elimination rules indeed give rise

88 CHAPTER 4. PATHFINDER

to well performing systems.
With regard to the staircase join, Dodo does not help developers invent

the staircase join. Inventing a smart mapping of complex data to flattened data
requires a degree of creativity one cannot ask of computer program. On the other
hand, given the idea of the pre/post plane and the staircase join algorithms,
Dodo does help design a system around them (Question 3). The multi-model
approach generally encourages developers to design data representations which
are more creative than simply mapping object fields to table attributes, and
gives them the tools to implement every part at the right level of abstraction.

Chapter 5

Categorical background

In this chapter, we take a closer look at the category theoretical background of
Dodo, in particular at monads, which are the theoretical foundation of the com-
prehension syntax, and at catamorphisms, which are used to model aggregate
functions and conversions, and in Chapter 6 also to implement a restricted class
of recursive functions. The theory given here has been foreshadowed already in
a some cryptic remarks near paragraph 30 of Chapter 2. In this chapter, we
give a more formal treatment.

In Section 5.1 we show how algebras and catamorphisms are a powerful and
concise method of reasoning about data structures and programs which traverse
those data structures. In Section 5.2, we examine the monad concept, and its
use in monad comprehensions. These sections are written purely from the point
of view of nested data types, and do not consider flattening. In the third section,
and in Chapter 6, we consider how to apply the theory to the situation in Dodo,
where the nested data model is layered over a flattened representation.

5.1 Algebras, monads and comprehensions

116 Abstract data types. At the conceptual level, lists of integers, with
type denoted L, can be thought of to be generated using two operations

1. nilL : 1→ L, which returns the empty list;

2. consL : Z× L→ L, which prepends a number to a list.

Different combinations of nils and conses yield different lists, and every list
can be constructed using nilL and consL. Functions on lists can be defined by

89

90 CHAPTER 5. CATEGORICAL BACKGROUND

induction to the nil/cons construction of an argument, e.g.

f nil(†) = f [] = e,

f cons(x , `) = x ⊕ f `

for suitable e and ⊕. For instance, to calculate the sum of the numbers in the
list, one could take e = 0 and ⊕ = +:

f nil(†) = sum [] = e = 0,

f cons(x , `) = x + (f `).

It can be shown with induction to the argument of f that f calculates the sum
the numbers of the list. We say that f = sum is defined by induction to the
structure of its argument.

As another example of a data structure, bags of integers, denoted B , are
defined using the same two operations nil and cons, but with in addition the
equation

cons(x , cons(y , `)) = cons(y , cons(x , `)), (5.1)

which expresses the indifference of bags towards the order in which elements are
inserted: in the LHS, y is added first, then x , but in the RHS it is the other
way around.

In contrast to lists, where there was a one-to-one relation between the ele-
ments of L and the nil/cons-trees, with bags, there is only a one-to-one relation
between elements of B and equivalence classes induced on B by equation (5.1).

In general, abstract data types are modelled as an algebra: a base type
together with a finite collection of operators. An algebra with laws is an algebra
that additionally carries equations that govern the behaviour of its operators.
Notice that in a sense, adding equations makes the type “smaller”, because the
equations make formerly different elements indistinguishable from each other.

117 Combining operators into one. In the previous paragraph, we wrote
that an algebra is a base type with a collection of operators defined on it. Using
sum types, it is possible to wrap up all operators into a single super-operator.
Defining an algebra as a base type abstracts further from day to day use, but
is more convenient from a theoretical point of view. As an example of a super-
operator, it is possible to combine nil and cons into a single operator

τ = nil O cons : (1 + Z× L)→ L.

Combining is a reversible process. The original operators can be recovered using
the inl and inr operators defined for sum types:

nilL = τ ◦ inl ,

consL = τ ◦ inr ,

5.1. ALGEBRAS, MONADS AND COMPREHENSIONS 91

as follows from the law h = (h O j) ◦ inl implied by figure 2.1. The usefulness of
this will soon become apparent.

118 Definition (Algebra). Given a functor F, an F-algebra is a function

τ : FA→ A.

The class of F-algebras for a functor F is written Alg(F). The class of F-algebras
that satisfy a set of equations E is written Alg(F,E).

In this definition, F represents the “signature” of the algebra. We give two
examples:

• The list algebra has two operators: a constant function nil , and cons
which takes a number and a list. Accordingly, τ = nil O cons has type
1+Z×L→ L, which can be written INS L→ L if we define the functor INS

by

INS X = 1 + Z×X ,

INS f = id1 + idZ × f .

• Another example of an INS-algebra is the function 0 O (+) of type 1 + Z×
Z → Z = INS Z. In this example, (+) : Z × Z → Z is addition, and
0 : 1→ Z is the constant function (λz • 0).

The name INS is derived from insert algebra, referring to the property that
list values are constructed by starting with the empty list and inserting elements.
An alternative representation for lists and bags would be to use nil : 1 → L,
tip : Z → L, concat : L × L → L and an equation expressing associativity
of concat . This is called a union algebra because now the fundamental operation
is concatenation (union). Union algebras have signature functor UN X = 1 +
Z + X ×X .

119 Algebras with equations. Informally, an algebra a O op satisfies,
say, equation (5.1) if substituting nil = a and cons = op yields truth for any
instantiation of x , y and `. In this paragraph we give a more formal definition
of what it means for an algebra to satisfy an equation. Readers satisfied with
the informal definition may skip the rest of this paragraph. For a full treatment
of algebras with equations, see Fokkinga [Fok92].

We write equation (5.1) in the form T τ = T ′ τ with τ = nil O cons.
Here, T τ and T ′ τ are functions that take a value (x , (y , `)) and turn it

92 CHAPTER 5. CATEGORICAL BACKGROUND

into cons(x , cons(y , `)) and cons(y , cons(x , `)), respectively. Examples of Trans-
formers T and T ′ that do this are

T ϕ = ϕ ◦ inr ◦
(
exl O (ϕ ◦ inr ◦ exr)

)
,

T ′ ϕ = ϕ ◦ inr ◦
((

exl ◦ exr
)

O

(
ϕ ◦ inr ◦ (exl O (exr ◦ exr))

))
.

In these intimidating looking definitions, the inr serves to select the proper sub-
operation of ϕ, i.e., cons if ϕ = nil O cons. The exls and exrs serve to shuffle
the x , y and ` of the argument into the proper positions in the equation. Any
equation can be captured as a pair (T ,T ′) of suitable transformers. We say
that an algebra α satisfies (T ,T ′) when the equation T α = T ′ α holds.

120 Definition (Homomorphism). Many interesting operations can be
regarded as a homomorphism between algebras. Let σ : FA→ A and τ : FB →
B be F-algebras. A function h : A → B is an F-homomorphism from σ to τ ,
denoted h : σ →F τ , if h ◦ σ = τ ◦ F h. Pictorially, this equation reads

FA
σ //

Fh

²²

A

h

²²
FB

τ // B

Homomorphisms have composition and identity: if f : β →F γ and g : α →F β
are homomorphisms, then f ◦ g is a homomorphism α→F γ.

121 Examples. A homomorphism well known from calculus is the exponen-
tiation function exp : R→ R. To see this, take F X = X × X with F f = f × f
and notice that the operations (+) and (×) are F-algebras:

(+) : FR→ R;

(×) : FR→ R.

Moreover, exp has the property that exp(x +y) = exp(x)×exp(y). In point-free
form, this reads exp ◦ (+) = (×) ◦ Fexp, which is exactly the definition of an
F-homomorphism. In the world of data types, the well-known function sum :
L → Z is an INS-homomorphism (nilL O consL) →INS (0 O (+)) with INS as in
paragraph 118. The homomorphism equation for sum

sum ◦ (nilL O consL) = (0 O (+)) ◦ INS sum

can be written as two equations

sum ◦ nilL = 0, sum ◦ consL = (+) ◦ INSsum.

5.1. ALGEBRAS, MONADS AND COMPREHENSIONS 93

The following diagrams illustrate its behaviour:

inl † Â nilOcons //
_

id1+idZ×sum

²²

[]
_

sum

²²
inl † Â

0O(+)
// 0

inr(2, [3, 5])
Â nilOcons //

_

id1+idZ×sum

²²

[2, 3, 5]
_

sum

²²
inr(2, 8)

Â

0O(+)
// 2 + 8

(5.2)

Especially note how in the right-hand diagram, the arrow F sum = id1 + idZ ×
sum recursively applies sum to the sublist [3, 5].

122 Definition (Initiality, Catamorphisms). An algebra τ in Alg(F,E)
is initial if there exists precisely one homomorphism τ →F σ for every σ in
Alg(F,E). This unique homomorphism is written (|τ → σ|)F,E , abbreviated to
(|σ|)F,E or even (|σ|). Homomorphisms from an initial algebra are called cata-
morphisms.

Lemma 124 provides a perhaps more intuitive interpretation: τ : FA→ A is
initial if and only if it is a bijection, up to E -equivalence, between FA and A.
We shall see in paragraph 126 that this makes catamorphisms functions which
are expressed by induction to the structure of their arguments.

123 Definition (Type functor). A type functor is a functor T for which
an initial algebra τ : F TA → TA exists. Note that the choice of F must be
inferred from the context. In this report, it is usually INS.

124 Lambeks lemma. An algebra τ : FA→ A is initial in Alg(F,E) if and
only if is is a bijection between E -equivalence classes of F-trees and values in
A. For example, in paragraph 116 we saw that every list can be written using
nilL and consL in exactly one way. We also saw that in the case of bags, ev-
ery bag corresponds to precisely one [cons(x , cons(y , `)) = cons(y , cons(x , `))]-
equivalence class. In contrast, the algebra (0 O (+)) : FZ → Z is not initial in
Alg(F, eqn. (5.1)): the number 5 can be written in different ways that are not
(5.1)-equivalent:

5 = 2 + 3 = (0 O (+)) (inr (2, 3)),

5 = 1 + 4 = (0 O (+)) (inr (1, 4)),

. . .

125 Obtaining initiality. When a functor F is polynomial, i.e., when it can
be expressed completely as a composition of sum type, product type, identity
functor, constant functor, and type functors, Alg(F,E) has an initial algebra.

94 CHAPTER 5. CATEGORICAL BACKGROUND

This covers most of the algebra signatures we come across in practice, INS in
particular. The algebra nilL O consL is the initial INS-algebra. The algebra
nilB O consB is the initial algebra under equation (5.1).

Second, an algebra τ initial in Alg(F,E) is also initial in Alg(F,E ∪ E ′). A
proof for the case E = ∅ can be found in [Fok92], paragraph 39 on page 60. We
are not aware of a proof for the general case. We use this in paragraph 138.

126 Initiality in operation. The pictures in paragraph 121 suggest that
sum functions as if every cons is replaced by a (+) and every nil by 0. This
property holds for catamorphisms in general. Catamorphisms are exactly the
functions that can be expressed by induction to the recursive construction of
their arguments.

To see this, consider an arbitrary catamorphism h = (|σ → τ |)F in Alg(F).
Because h is a homomorphism, we have

h ◦ σ = τ ◦ F h.

Initiality implies bijectivity, therefore,

h = τ ◦ F h ◦ σ−1.

Specializing to F = INS for greater familiarity, h = τ ◦ (id1 + idZ × h) ◦ σ−1

as applied to a value v can be expressed in three steps. The first step σ−1

essentially maps v either to inl † or inr(x , xs), depending on whether v is
constructed using nil or cons, respectively. The final step τ replaces inl by,
say, 0 and inr by (+). The middle step ensures that this procedure is applied
to every position in the nil/cons decomposition of v . This argument can be
generalized to general F-homomorphisms and also to algebras with laws.

127 Use of initiality. Two common things to express as a catamorphism
are conversions (“casts”) and aggregate functions. Given a list, we can apply
the catamorphism (|nilB OconsB |) to it to obtain a bag. This is a conversion. We
can also apply (|0 O (+)|) to calculate the sum of the numbers in the list. This
is an aggregate function. Writing sum as a catamorphism clearly exposes its
structure: one initial intermediate result 0 and one function (+) that takes a
value and an intermediate result. Readers familiar with functional programming
will surely recognize this familiar fold -pattern. In the sequel, catamorphisms will
be indispensable in the implementation of the comprehension syntax. We will
define List [f x | . . .] comprehensions, and also Sum[f x | . . .] comprehensions.
The only difference between them is that when they are rewritten to point-free
form, the former uses a (|nil O cons|) catamorphism, where the latter uses a
(|0 O (+)|) catamorphism.

5.1. ALGEBRAS, MONADS AND COMPREHENSIONS 95

There are several useful laws about catamorphisms, the most obvious of
which reads

h : α→F β =⇒ h ◦ (|α|)F,E = (|β|)F,E .

Given τ : FA → A initial in Alg(F,E), this theorem uses the uniqueness and
existence of the homomorphism (|ϕ|)F,E for every ϕ to simplify compositions
of homomorphisms that start in τ . Although the peculiarities of the Dodo
approach introduce some interesting complications, this law can be useful for
for deriving alternative query plans.

This theorem and some similar ones are collectively known as fusion the-
orems because they combine multiple homomorphisms into one. More on the
application of fusion in Dodo can be found in paragraph 135.

128 Polymorphism. In the preceding paragraphs we talked about the
type L of lists of integers and used it to illustrate the concept of an algebra,
homomorphism, etc. But in section 2.2.1 we introduced the List functor which
could construct list types over arbitrary types, not just over integers. To ex-
tend the algebra concept to parameterized types, we need to fix the signature
functor INS. Until now, we defined the INS functor as

INS X = 1 + Z×X ,

INS f = id1 + idZ × f ,

and the “list of integers” type as the carrier of the initial INS-algebra τ : INS L→
L. With this definition, the integer type Z is hard-coded into INS. We solve this
by making INS a bifunctor, with the additional parameter being the element
type:

INS(A,X) = 1 + A×X ,

INS(f , g) = id1 + f × g .

The homomorphism condition h◦τ = σ◦Fτ is reformulated to h◦τ = σ◦F(id , h).
With these modifications, we again define the List type former to yield the carrier
of the initial algebra in Alg(INS), i.e.,

τA : INS(A, List A)→ List A.

When no confusion can arise, we de-emphasize the dependence on the element
type by writing INSAX or even INS X instead of INS(A,X).

96 CHAPTER 5. CATEGORICAL BACKGROUND

5.2 Monads and monad comprehensions

129 Comprehension examples. Comprehension notation provides a con-
venient way to write down collection values and aggregations. A comprehension
expression M [| . . .] consists of a comprehension name, a head and a sequence
of qualifiers. The comprehension name is required; in contrast to other liter-
ature and programming languages, the notation [|] has no meaning in itself.
Examples of comprehensions with xs = [1, 2, 3] are

List [x 2 | x ← xs] = [1, 4, 9],

Sum[x 2 | x ← xs] = 1 + 4 + 9 = 14,

List [x + y | x ← xs, y ← xs] = [2, 3, 4, 3, 4, 5, 4, 5, 6],

List [x + y | x ← xs, y ← xs, x < y] = [3, 4, 5]

Set [x + y | x ← xs, y ← xs] = {2, 3, 4, 3, 4, 5, 4, 5, 6}

= {2, 3, 4, 5, 6}.

On the right-hand side of the List comprehension, the spacing suggests a group-
ing of the elements in three sublists, the first corresponding to x = 1, the second
to x = 2 and the third to x = 3. One can imagine the list [2, 3, 4, 3, 4, 5, 4, 5, 6]
to have been formed by first generating

List [List [x + y | y ← xs] | x ← xs]
= [List [1 + y | y ← xs],List [2 + y | y ← xs],List [3 + y | y ← xs]]
= [[2, 3, 4], [3, 4, 5], [4, 5, 6]]

(5.3)

and then crossing out the inner brackets to yield [2, 3, 4, 3, 4, 5, 4, 5, 6]. We will
use the monad concept to make this more precise.

130 Definition (Monad). A T-monad is a triple (T, unit , unnest) with T

a functor, unit and unnest families of functions unitA : A→ TA and unnestA :
TTA→ TA that satisfy the equations in the following commutative diagrams:

TA
unitTA//

idTA ##FFFFFFFF TTA

unnestA

²²

TA
TunitAoo

idTA{{xxxxxxxx

TA

TTTA
TunnestA//

unnestTA

²²

TTA

unnestA

²²
TTA

unnestA // TA

(5.4)

The intuition here is that unitA adds an extra level of nesting while unnest
removes one. As an example, consider

T = List,

unitA a = [a],

unnestA [[a1, . . . , an], . . . , [z1, . . . , zm]] = [a1, . . . , an , . . . , z1, . . . , zm]

5.2. MONADS AND MONAD COMPREHENSIONS 97

It is interesting to try out the equalities from (5.4) on this monad:

[1, 2] Â unitTA//
¨

idTA ##GG
GG

GG
GG

G

[
[1, 2]

]

_

unnestA

²²
[1, 2]

[
[1], [2]

]

_

unnestA

²²

[1, 2]ÂTunitAoo
6

idTA{{vvvvvvvvv

[1, 2]

[[
[1], [2, 3]

]
,
[]] ÂTunnestA//

_

unnestTA

²²

[
[1, 2, 3], []

]

_

unnestA

²²[
[1], [2, 3]

] Â unnestA // [1, 2, 3]

131 Definition (Monad with Zero). A monad with zero (T, unit , unnest , zero)
is a T-monad with an additional function zero : X → TA that returns an
“empty” T. As zero ignores its argument, any type X will do. The zero func-
tion must satisfy

TTA

unnestA ##GGGGGGGG TX
T zeroAoo

zeroA

²²
TA

X
zeroTA//

zeroA

²²

TTA

unnestA{{xxxxxxxx

TA

The obvious zero candidate for List is zero x = [], which indeed satisfies the
equations:

[[]]
¢

unnestA ÃÃA
AA

AA
AA

A
[3]ÂT zeroAoo
_

zeroA

²²
[]

3
Â zeroTA //

_

zeroA

²²

[]@

unnestA¡¡¡¡
¡¡

¡¡
¡

[]

132 Comprehension syntax. The Dodo comprehension syntax demon-
strated in paragraph 129 consists of three parts. First, the name of the compre-
hension type, e.g, List. Second, the head of the comprehension, e.g., x 2 or x +y .
This describes the constituents of the new value in terms of variables bound in
the third part, the tail. The tail consists of generators and filters. Generators
bind variables, and filters impose conditions on the values of the variables. Gen-
erators are of the form name ← value, where value must have type TA with T

a functor.
A comprehension type M is a pair (µ, (T, unitM , unnestM)) of an F-algebra µ :

F TA → TA and a T-monad. The semantics of comprehensions is given by
translation to comprehensionless syntax according to the following rules:

• A comprehension M [e |] is rewritten to (unitM e). So, List [3 |] =
unitList 3 = [3]. Likewise, referring to paragraph 133, Sum[3 |] =
unitSum 3 = id 3 = 3.

98 CHAPTER 5. CATEGORICAL BACKGROUND

• A comprehension M [e | x ← xs] with xs : T′A is rewritten to (|µ|)(T′(λx •
e) xs). So,

Sum[x 2 | x ← xs] = (|0 O (+)|) (List (λx • x 2) xs)

= (|0 O (+)|) [1, 4, 9] = 1 + 4 + 9 + 0 = 14.

• As hinted at in paragraph 129, a comprehension M [e | qs, qs ′] where qs
and qs ′ are parts of the tail is rewritten to unnestM M [M [e | qs ′] | qs].
So, first an intermediate result is generated that contains an extra level
of nesting, then the nesting is removed using unnest . Referring back to
equation (5.3),

List [x + y | x ← xs, y ← xs]
= unnestList List [List [x + y | y ← xs] | x ← xs]
= unnestList [[2, 3, 4], [3, 4, 5], [4, 5, 6]]
= [2, 3, 4, 3, 4, 5, 4, 5, 6]

(5.5)

• Finally, if M has a monad with zero, M [e | b] with b a boolean expression
is rewritten to

if b then unitM e else zeroM e fi.

Using these four rules, every comprehension is transformed into an equivalent
expression that does not use the comprehension syntax.

133 Common Comprehensions. Every type functor gives rise to a
comprehension type. Let T be a type functor with corresponding initial INS-
algebra τ = nil O cons. Then we define the monad type T to be

(τ, (T, unitT, unnestT, zeroT))

with

unitT x = cons(x ,nil †),

zeroT z = nil †,

unnestT xs = (|nil O concat |) xs,

where
concatT (xs, ys) = (|ys O cons|) xs.

This gives comprehension syntax for data types that can be expressed in in-
sert notation, such as the collection types list, bag and set. It can readily be
generalized to algebras of other signatures, such as union representation,

5.3. APPLICATION IN DODO 99

Comprehension for aggregates are defined using an Id-monad. For instance,
the function 0 O (+) has type INS IdA→ IdA. In such a case we define the Sum
comprehension type as

(
(0 O (+)), (Id, unit = id , unnest = id , zero = 0)

)
.

Because A = IdA = Id IdA, the unit and unnest functions do nothing.

5.3 Application in Dodo

134 Mapping to storage layout. In the nested data model, data types
are defined in terms of constructor algebras like τ = nil O cons. But the point
of Dodo is that they are actually stored in a very different, flattened way. Data
types are added to Dodo in the form of extensions. The extension writer specifies
the flattened level storage layout using columns (binary relations) and defines a
mapping from nested level operations to flattened level operations. The exten-
sion writer should choose the storage layout in such a way that nesting-related
operations such as unnest map onto relatively efficient relational operations such
as semijoins.

135 No arbitrary catamorphisms. As a consequence of storing data in
a flattened form, Dodo cannot evaluate arbitrary catamorphisms. If the data is
stored in a nested form, it is always possible to take two arbitrary functions f
and e of suitable type and walk the INS -structure, performing an e operation
on nil nodes and an f operation on cons nodes. This is nested loop processing,
so its use is discouraged, but as a last resort it can be done. But Dodo does
not store its data according to its algebraic structure, it stores it as a bunch of
columns grouped in a frame. Consequently, the operations it can perform on it
are only those column/frame operations that are provided by extension writers.

In paragraph 127 we mentioned theorems that can be used to combine ad-
jacent catamorphisms and homomorphisms, eliminating the materialization of
an intermediate result. The risk is, however, that we end up with a catamor-
phism for which no column/frame equivalent is known. Determining how the
theorems can still be used without losing the capability of breaking the fused
catamorphisms up again into known frame operations is an interesting line of
future research. Paragraph 137 sketches a couple of elementary optimizations
that are possible using a tool called the homomorphism graph, which is useful
because Dodo cannot do without this homomorphism graph anyway.

100 CHAPTER 5. CATEGORICAL BACKGROUND

136 Homomorphism graph. In order to express catamorphisms ((|·|),
see 122) in terms of known operations, Dodo maintains a homomorphism graph.
The nodes of this graph are algebras. Algebras are connected by an arc if Dodo
knows a homomorphism between them. If the homomorphism is actually im-
plemented in an extension, the arc is labeled with the name of the implemented
function. Anonymous arcs can be used for optimization but cannot occur in the
final query plan because Dodo does not have an implementation for them.

Exactly how the algebras are represented depends on the implementation.
One can imagine naive Dodo’s storing algebras simply as a name, and sophis-
ticated Dodo’s storing them in a more detailed representation that makes it
possible to derive more optimizations. For a first attempt, it seems sufficient
to represent the algebras as user-provided names, just like we often use greek
letters instead of O formulas in the examples. However, there is one excep-
tion: if τ is an initial F-algebra for a type T, then the lifted function Tf can
be expressed as (|τ ◦ F(f , id)|). Using fusion theorems (paragraph 127) it can
be shown that if h is an homomorphism τ →F β, it is also an homomorphism
τ ◦F(f , id)→F β ◦F(f , id) for any f . Because lifted functions are so common, it
seems that adding a representation for ϕ◦F(f , id) will make the homomorphism
graph much more useful.

137 Homomorphism graph optimizations. The homomorphism graph
can also be used for simple optimizations. Consider the following system:

ρ

lb

%%L
L

L
L

L
L

L τ
T f //

lb

²²

revoo τ ◦ F(f , id)

lb

²²Â
Â
Â

β
B f //

sum

²²

β ◦ F(f , id)

σ

(5.6)

with τ declared the initial F -algebra and β the initial (F,E)-algebra. Recall
that E = {(5.1)} expresses the indifference of an algebra towards the insertion
order of its elements. We briefly describe every arc in the graph and justify why
it is reasonable Dodo is made aware of it.

The function sum : BZ → Z is an homomorphism β →F σ. Therefore,
sum = (|σ|)F,E . Likewise, we have the list reversal function rev = (|ρ|)F : TA →
TA and the conversion function lb = (|β|)F : TA → BA. That these functions
are indeed homomorphisms cannot be checked by Dodo. They are just declared
as such by the extension writer.

5.3. APPLICATION IN DODO 101

The dashed arrow from τ ◦F(f , id) to β◦F(f , id) expresses the fact referred to
in the previous paragraph that first transforming the elements one by one (T f)
and then converting to a bag (lb) is equivalent to first converting to a bag (lb)
and then transforming the elements (B f). This is a useful rule to have built-in
to the system because lifting a function f to T f occurs so often.

Finally, reversing a list and then converting to a bag is a waste of time. The
definition of commutative diagrams (page 19) together with the existence of an
arrow lb : ρ→F β expresses that every composition lb ◦ rev can immediately be
replaced by just lb.

Now consider the query Sum[f x | x ← rev xs], which in time gives rise to
the query fragment

(|σ|)F ◦ T f ◦ rev .

Looking at the graph, Dodo notices that (|σ|)F : τ →F σ can be written sum ◦ lb,
yielding

sum ◦ lb ◦ T f ◦ rev .

The fragment lb ◦ T f connects τ to β ◦ F(f , id) and there is another route:
B f ◦ lb, allowing us to write

sum ◦ B f ◦ lb ◦ rev .

Applying the same trick again, we replace lb ◦ rev by a shorter path from τ to
β: just lb. In the resulting query, no list reversal is performed, and it is also
conceivable that operating on bags is cheaper than operating on lists because we
no longer need to keep track of the ordering. This concludes our brief example
of optimizations using the homomorphism graph.

138 No Bag type needed. In example 137, the function sum was defined
on bags. Initiality allowed Dodo to derive a (|σ|) for lists, and because the
extension writer had declared lb to also be an homomorphism from ρ to β we
could simplify the expression considerably. The question is: could we also have
done this if no convenient bag type had been available? The answer is yes.

In paragraph 137 we picked the algebra β : INSBA → BA as a convenient
initial object of Alg(INS,E), where E = {(5.1)} represents indifference to order.
If there is no bag type available, we can just use another initial (INS,E)-algebra.

Paragraph 125 promises the existence of an algebra τ ′ that constructs lists
just as τ does, but with the added assumption that the order of the elements
in the list shall never be considered. The catamorphism (|τ → τ ′|) can be
implemented as id because the underlying implementation remains the same.

102 CHAPTER 5. CATEGORICAL BACKGROUND

The updated homomorphism graph becomes

ρ

id

%%L
L

L
L

L
L

L τ
T f //

id

²²

revoo τ ◦ F(f , id)

id

²²Â
Â
Â

τ ′
B f //

sum

²²

τ ′ ◦ F(f , id)

σ

(5.7)

139 Weakness of homomorphism graph optimizations. The primary
purpose of the homomorphism graph is to derive implementations for catamor-
phisms. The optimization (|σ|) ◦ Tf ◦ rev = sum ◦ Bf ◦ lb looks very nice but
may lead the reader to expect more than the homomorphism graph is able to
provide. For instance, it is hard to see how laws such as rev ◦Tf = Tf ◦ rev can
be derived from it.

Chapter 6

Inductively defined types

In Chapter 2 we described the Dodo data model with its nested and flattened
layer. New types at the nested layer are defined by defining a frame representa-
tion. The framework described in Chapter 2 allows for types with parameters,
such as List, but not for inductive types. An inductively defined type is a type
which is defined in terms of itself, such as the classical list type in functional
programming:

data ZList = Nil | Cons Z ZList (6.1)

Notice how ZList occurs on the right hand side, while being defined on the left
hand side. In paragraph 126 of Chapter 5, catamorphisms were introduced as
functions which are expressed by induction to the construction of their argument.
Catamorphisms play an important role when dealing with comprehension syntax
(figure 2.3) and when converting and aggregating over collection types. However,
in Chapter 2, inductively defined types were not supported as such. Instead, in
paragraph 27 we recommended to define such types opaquely and endow them
with higher-order functions suitable for processing and iterating over the type.
For instance, in Chapter 3 we defined a List type with the functor-property
(map) and sum and count functions. To implement a given catamorphism (|α|),
Dodo attempts to find a path in the catamorphism graph which fully consists
of “canned” catamorphisms such as list2bag and sum (paragraph 137).

The recommendation still stands. For maximum performance, processing
should be done using operations defined at the frame level, translated to frame
transformations and efficient flat operators. In the current chapter, however,
we consider how to extend the Dodo data model with inductively defined types
and how to deal with functions which recursively traverse values of such types.
Apart from this being an interesting topic by itself, it is also a useful foundation
for the theory described in paragraph 137, since it allows the system to evaluate

103

104 CHAPTER 6. INDUCTIVELY DEFINED TYPES

catamorphisms by itself if no suitable predefined implementation can be found.
In such cases, implementing the catamorphism directly may be useful as a last
resort.

140 This chapter. In Section 6.2 we define a frame representation for
inductive types. We

• specify the structure of the mu〈· · ·〉 frame and its semantics (its interpre-
tation function);

• give rewrite rules for the standard frame operations dom mu〈· · ·〉, r ∗
mu〈· · ·〉 and mu〈· · ·〉 tmu〈· · ·〉;

This allows us to build inductively defined data types by placing suitably for-
matted data in the underlying database and declaring a mu〈· · ·〉 frame. It also
allows Dodo to handle such data when it occurs in queries. In Section 6.3
and 6.4, we consider how to construct such values within queries (initial alge-
bras) and how to consume values (catamorphims), respectively. We

• show how to generate a rewrite rule which implements the initial algebra
for an inductively defined type, based on its structure (signature);

• show how to implement catamorphisms using a generic bulk oriented it-
eration at the column level.

6.1 Inductively defined types and catamorphisms

141 Inductively defined types. Above we presented the type of lists
of integers as it might be represented in the functional language Haskell: data

ZList = Nil | Cons Z ZList. This equation states that a value of type ZList
is either the empty list (Nil) or an element (Z) prepended (Cons) to another
list (ZList). In the notation of Chapter 2, we could say

ZList “=” 1 + Z× ZList . (6.2)

More precisely, there is a bijection τ with inverse τ∪ between ZList and 1+Z×
ZList , the partial decomposition of its tree structure. In fact, this bijection is
precisely the initial algebra (paragraph 122) of ZList .

1 + Z× ZList
τ ..

ZList .
τ∪

nn (6.3)

6.2. FRAME REPRESENTATION FOR FIXPOINT TYPES 105

Generalizing to arbitrary signature functor S, with in the above case SX =
1 + Z×X , Equations (6.2) and (6.3) take the form

ZList “=” SZList ; SZList
τ --

ZList .
τ∪

ll

The equations then read “ZList is a fixpoint type of S,” for which, as all such
types are isomorphic, we introduce the notation µS. So, ZList = µS. In the
examples in this chapter, we usually take SX = 1 + Z × X , but the theory is
independent of the choice of S.

142 Catamorphisms. We have seen in Chapter 5 that initiality of τ :
ST → T means that for every S-algebra α : SA → A, there is a unique homo-
morphism (|α|) : T → A which makes the following diagram commute:

ST
τ //

S(|α|)

²²

T

(|α|)

²²
SA

α // A

(6.4)

For instance, if we put τ = nil O cons and choose α = 0 O (+), it is easy to derive

(|α|) [] = (α ◦ S(|α|) ◦ τ∪) [] = (α ◦ S(|α|)) (inl †) = α (inl †) = 0 † = 0,

(|α|) [z , zs . . .] = (α ◦ S(|α|) ◦ τ∪) [z , zs . . .] = · · · = α (inr (z , (|α|)zs)) = z + (|α|)zs

which is the definition of the well-known function sum on lists:

sum [] = 0,

sum [z , zs . . .] = z + sum zs.

Thus the statement that catamorphisms are functions defined by induction to
the structure of their argument.

6.2 Frame representation for fixpoint types

143 Example. In this section we define a frame structure for inductively
defined types. Inductively defined types can be characterized as types of which
the values may “contain” other values of the same type. For instance, if we
write the list [17, 19] in cons/nil -notation, we see that [17, 19] = cons(17, [19]).
In our frame representation, we break up this containment relation and instead
“prepend” 17 not to the list [19] itself, but to a key identifying the list [19].
Before we state this formally, we begin with an example.

106 CHAPTER 6. INDUCTIVELY DEFINED TYPES

144 Example. In this example we consider a frame representation for the
mapping

F = {α1 7→ [], α2 7→ [17, 19]} : α→ ZList .

A natural starting point for a frame representation of F is to first consider all
“list nodes” used in F , and identify each of them with a key:

β1 7→ nil

²²
†

β2 7→ cons

||xx
xx

xx
xx

x

$$JJJJJJJJJ

17 β3 7→ cons

zztttttttttt

$$HH
HH

HH
HH

H

19 β4 7→ nil

²²
†

Notice that we use keys α1 and α2 to identify the lists as seen from outside the
frame, and that we use keys β1, . . . , β4 for the “internal view.” In the frame
representation, there is a column r : [α 7→β] to make the relation between the
two explicit. This relation identifies which list node βi is the root of the tree
identified by αj . Now, we can remove the nested structure by replacing all
references to sublists by explicit keys:

G =

β1 7→ nil

²²
†

, β2 7→ cons

¡¡££
££

££
£

ÁÁ<
<<

<<
<<

17 β3

, β3 7→ cons

¡¡££
££

££
£

ÁÁ<
<<

<<
<<

19 β4

, β4 7→ nil

²²
†

.

In this form, the data can easily be encoded in a regular frame G : β → 1+Z×β.
Together, r and G contain all information we need to represent F . All we have
to do is wrap G : β → Sβ and r : [α 7→β] into a frame for the fixpoint type,
which we call mu〈〉. In practice, we also add the domain d = domG to the

6.2. FRAME REPRESENTATION FOR FIXPOINT TYPES 107

frame. This is redundant, but simplifies the rewrite rules. The result:

F = mu〈 r
α1 β1

α2 β2

, d
β1 β1

β2 β2

β3 β3

β4 β4

,G〉

G = either〈atom〈 e
β1 β1

β4 β4

〉, pair〈atom〈 f
β2 17
β3 19

〉, atom〈 s
β2 β3

β3 β4

〉〉〉.

(6.5)
The column e lists the nil -nodes, f encodes the data in the cons-nodes, and s
lists the successor nodes of the cons-nodes.

Notice that in this example, the encoding is redundant: keys β1 and β4

both identify identical nil -nodes. It is possible to remove this redundancy by
replacing every β1 by β4, or vice versa, without affecting the theory in this
chapter.

145 Semantics of the mu-frame. The relationship between mu〈r , d ,G〉
and r , d and G is defined succinctly by the following diagram:

Sβ

Smu〈d,d,G〉

²²

β
Goo

mu〈d,d,G〉

²²

α
roo

mu〈r ,d,G〉ppS(µS)
τ

++ µS

τ∪

ll

(6.6)

When speaking of the semantics of the mu〈〉-frame, the question is: given a
frame mu〈r , d ,G〉, such as the one in (6.5), how does one look up a key in
it? In the diagram, we start with a key in α, e.g., in the upper right of the
diagram, and we wish to obtain the corresponding value of type µS in the
lower right. The first step is to use r to turn the zlist key α into a internal
node key β. The question of the semantics of mu〈r , d ,G〉 is now reduced to
the semantics of mu〈d , d ,G〉, which is a mu〈〉-frame which does not distinguish
between internal and external keys: every node is visible from the outside. In the
sequel, it will often be convenient to focus on how to handle frames mu〈d , d ,G〉.
Any such discussion can easily be generalized to 〈r , d ,G〉 using the law

mu〈r , d ,G〉 = r ∗mu〈d , d ,G〉 (6.7)

and thus,

f ◦mu〈r , d ,G〉 = f ◦ (r ∗mu〈d , d ,G〉) = r ∗ (f ◦mu〈d , d ,G〉).

108 CHAPTER 6. INDUCTIVELY DEFINED TYPES

The rest of the diagram is concerned with how to look up a key k ∈ β in mu〈d , d ,G〉:
first use G to determine the structure of the corresponding node, e.g., “empty”
(inl †), or “17 prepended to . . . ” (inr (17, . . .)). However, instead of an actual
zlist, the dots now contain a key which identifies the zlist. The step Smu〈d , d ,G〉
is the recursion step, which replaces this key by the actual value. Notice that
the functor S, in this case Sf = id + id × f , “knows” precisely where in the
node, keys have to be replaced by actual zlists. Thus, in the lower left corner
of the diagram, we find values such as inl † and inr(17, [19]). We finish by
applying τ , the initial algebra for µS, which in our example replaces inl by nil
and inr by cons. Expressed as a formula, diagram (6.6) becomes

mu〈r , d ,G〉 x = (τ ◦ Smu〈d , d ,G〉 ◦G) r(x), (general)
mu〈d , d ,G〉 = τ ◦ Smu〈d , d ,G〉 ◦G . (with r = d)

(6.8)

See figure 6.1 for an extended example.
Reminder: the procedure described here is not how inductive types are treated
during processing. We are simply defining the semantics of the mu〈〉 frame by
stating how one extracts nested data from it. In the next section, we give a
definition of τ at the frame level, to be used during query processing.

146 Frame equivalence. In the sequel we often need to compare mu〈〉 frames
for equality. Without proof we claim that

mu〈r , d ,G〉 = mu〈r ∗ ϕ, ϕ∪ ∗ d ∗ ϕ, Satom〈ϕ〉 ◦G ′ ◦ atom〈ϕ∪〉〉
ϕ is one-to-one

(6.9)

The intuition behind ϕ is that it maps the old internal keys to the new internal
keys. Thus, if α are tree identifiers, β old node identifiers, and γ new node
identifiers, then r ∗ϕ : [α 7→ γ] and ϕ∪∗d ∗ϕ : [γ 7↔7 !]. Similarly, with G : β → Sβ,

Satom〈ϕ〉 ◦G ′ ◦ atom〈ϕ∪〉 : γ → Sγ.

Again, the signature functor S knows precisely in which positions β needs to be
replaced by γ using atom〈ϕ〉.

147 Standard frame operations. We implement the fundamental frame
operations as follows:

dom mu〈r , d ,G〉 = twin(r)

r ′ ∗mu〈r , d ,G〉 = mu〈r ′ ∗ r , d ,G〉

mu〈r1, d1,G1〉 tmu〈r2, d2,G2〉 = mu〈
(r1 ∗ sl∪) ∪ (r2 ∗ sr∪),
rtwin(ms),
(Satom〈sl∪〉 ◦G1 ◦ atom〈sl〉)t
(Satom〈sr∪〉 ◦G2 ◦ atom〈sr〉)〉

6.2. FRAME REPRESENTATION FOR FIXPOINT TYPES 109

F α2
=

mu〈r , d ,G〉 α2

= { equation (6.8) }

(τ ◦ Smu〈d , d ,G〉 ◦G) r(α2)

= { evaluate r }

(τ ◦ Smu〈d , d ,G〉 ◦G) β2

= { evaluate G }

(τ ◦ Smu〈d , d ,G〉) (inr (17, β3))

= { apply S, τ = nil O cons }

cons (17,mu〈d , d ,G〉 β3)

= { equation (6.8) }

cons (17, (τ ◦ Smu〈d , d ,G〉 ◦G) β3)

= { evaluate G }

cons (17, (τ ◦ Smu〈d , d ,G〉) (inr (19, β4)))

= { apply S, τ = nil O cons }

cons (17, (cons (19,mu〈d , d ,G〉 β4)))

= { equation (6.8) }

cons (17, (cons (19, (τ ◦ Smu〈d , d ,G〉 ◦G) β4)))

= { evaluate G }

cons (17, (cons (19, (τ ◦ Smu〈d , d ,G〉) (inl †))))

= { apply S, τ = nil O cons }

cons (17, (cons (19, (nil †))))

= { graphical representation }

cons

¢¢¤¤
¤¤

¤¤
¤

ÂÂ?
??

??
??

?

17 cons

ÄÄ¡¡
¡¡

¡¡
¡¡

ÀÀ;
;;

;;
;;

19 nil

²²
†

Figure 6.1: The interpretation rule
for mu〈〉-frames in action. Three
times, equation (6.8) is used to expand
the mu〈〉-frame, each time followed
by an application of G to obtain the
node structure. Applying Smu〈d , d ,G〉
means looking up the node keys yielded
by G and recursively interpreting the re-
sult. The first two times, this yields a
new node. The final time, for the empty
list, it leaves the node unchanged.

110 CHAPTER 6. INDUCTIVELY DEFINED TYPES

ms = mksum(sethead(d1, †), sethead(d2, †))

: [1 7↔7 β + γ]

sl = sumleft(. . .) : [β + γ↔7 β]

sr = sumright(. . .) : [β + γ↔7 γ]

The essential step in the rule for t is that we construct a new keyspace which
encompasses all nodes in both mu〈〉-frames. Suppose the nodes of mu〈r1, d1,G1〉
are identified by keys in β and those in mu〈r2, d2,G2〉 by keys in γ. We use
mksum, sumleft and sumright as defined in paragraph 63 to construct a new
key space β + γ. The column ms : [1←7 β + γ] enumerates all new keys, and
sl : [β + γ↔7 β] and sr : [β + γ↔7 γ] map them back to β and γ, respectively.
Having these, we simply convert G1 and G2 to the new key space, and adjust
the mapping from outer values to nodes accordingly.

6.3 Rewrite rule for the initial algebra

We give frame implementations of two canonical operations on inductively de-
fined types: constructing them using their initial algebra, e.g., τ = nil O cons,
and deconstructing them using a catamorphism (|·|). In the current section, we
consider τ . In a later section, we look at (|·|).

148 Decomposition. Initial S-algebras τS : S(µS) → µS are completely
determined by their signature functor S, because S describes precisely how values
of type µS are constructed. Given arbitrary S, we wish to derive a frame rule for
the corresponding initial algebra τS, usually just written τ . To derive a frame
rule for τ , given a frame H : α → S(µS) we need to construct a replacement
frame H ′ for the composition τ ◦ H : α→ µS.

For general S, we do not explicitly know the frame structure of H . Based
on the type S(µS) we know, however, that we can split it into a frame for µS,
encapsulated in a frame for S(). At the position marked by the , this outer
frame H0 : α→ Sβ will produce keys β. The encapsulated mu〈〉-frame mu〈r , d ,G〉 :
β → µS then takes these β to µS. Thus, we can always write H as H =
Smu〈r , d ,G〉 ◦ H0 with H0 : α → Sβ. Pictorially, when rewriting τ ◦ H we are
trying to obtain H ′ = mu〈r ′, d ′,G ′〉 in the commutative diagram

α
H0 //

H

88

H ′=mu〈r ′,d′,G′〉

CCSβ
S mu〈r ,d,G〉 // S(µS)

τ // µS .

6.3. REWRITE RULE FOR THE INITIAL ALGEBRA 111

Here, H0 encodes the outer S structure, with the values of µS replaced by keys β.
The term Smu〈r , d ,G〉 replaces those keys by the actual values, thus achieving
the decomposition of H .

Notice that if SX uses its argument X more than once, e.g., SX = 1+X×X ,
then the frame for S(µS) contains more than one µS frame. All these frames
have to be combined into mu〈r , d ,G〉 in order to reach the decomposition H =
Smu〈r , d ,G〉 ◦ H0. This adds some extra bookkeeping but does not fundamen-
tally alter our approach. In the rest of this chapter we will generally ignore this
complication.

149 Rewrite rule. Given H = Smu〈r , d ,G〉 ◦H0 : α→ S(µS) with

H0 : α→ Sβ, r : [β 7→ γ],
mu〈r , d ,G〉 : β → µS, d : [γ 7↔7 !],

G : γ → Sγ,
(6.10)

we look for a frame H ′ = mu〈r ′, d ′,G ′〉 which satisfies H ′ = τ ◦ H . Such a
frame is given by the equations

H ′ = mu〈r ′, d ′,G ′〉 : α→ µS, with

r ′ = sr∪ : [α 7↔ γ + α],
d ′ = rtwin(ms) : [γ + α 7↔7 !],
G ′ = (Satom〈sl∪〉 ◦G ◦ atom〈sl〉) t

(Satom〈r ∗ sl∪〉 ◦ H0 ◦ atom〈sr〉) : (γ + α)→ S(γ + α),

ms = mksum(sethead(d , †), sethead(dom H0, †)) : [1 7←7 γ + α],
sl = sumleft(. . .) : [γ + α↔7 γ],
sr = sumright(. . .) : [γ + α↔7 α].

(6.11)

The new frame contains all old nodes, which in H were identified by γ, plus a
new node for every key in α. Therefore, the internal key space of the new frame
is γ +α. We build an explicit representation of γ +α using mksum, sumleft and
sumright .

Consider every part of mu〈r ′, d ′,G ′〉 in turn. The relation r ′ = sr∪ maps
every outer key to the corresponding newly constructed inner key. The middle
component d ′ is an explicit listing of the keys in γ + α. Finally, G ′ is the union
of two sets of nodes. The first set, Satom〈sl∪〉 ◦G ◦ atom〈sl〉, is simply the old
nodes as stored in G , but translated to the new key space. The structure of the
new nodes is determined by H0 : α → Sβ. We use sr to translate from γ + α
to α, and after applying H0, the β keys in the result have to be translated back
to γ +α. We do this in two steps. In the first step, r , we translate outer keys β
of the old mu〈〉-frame to inner keys γ of the old mu frame. In the second step,
sl , these are translated to inner keys of the new mu〈〉 frame.

112 CHAPTER 6. INDUCTIVELY DEFINED TYPES

150 Proof. The following pointwise calculation proves that with H as in
Equation (6.10) and H ′ as in (6.11), H ′ = τ ◦H :

H ′ k

= { Expand H ′ }

mu〈r ′, d ′,G ′〉 k

= { Interpretation of mu〈〉, Eq. (6.8) }

(τ ◦ Smu〈d ′, d ′,G ′〉 ◦G ′) r ′(k)

= { Rearrange, r ′ = sr∪ }

(τ ◦ Smu〈d ′, d ′,G ′〉) G ′(sr∪(k))

= { Expand G ′ as in (6.11), know sl ∗ sr∪ = ∅ }

(τ ◦ Smu〈d ′, d ′,G ′〉) ((Satom〈r ∗ sl∪〉 ◦ H0) k)

= { Rearrange }

(τ ◦ Smu〈d ′, d ′,G ′〉 ◦ Satom〈r ∗ sl∪〉 ◦ H0) k

= { Combine S functors, d ′ is domain complete identity relation }

(τ ◦ Smu〈r ∗ sl∪, d ′,G ′〉 ◦H0) k

= { Frame equivalence, use Eq. (6.9) with ϕ = sl }

(τ ◦ Smu〈r ∗ sl∪ ∗ sl , sl∪ ∗ d ′ ∗ sl ,Satom〈sl〉 ◦G ′ ◦ atom〈sl∪〉〉 ◦ H0) k

= { Simplify, expand G ′ }

(τ ◦ Smu〈r , sl∪ ∗ d ′ ∗ sl ,G〉 ◦H0) k

(∗) = { Definition of mksum, rtwin in sl and d ′ }

(τ ◦ Smu〈r , d ,G〉 ◦ H0) k

= { Recognize H = mu〈r , d ,G〉 }

(τ ◦H) k .

Thus we find H ′ k = (τ ◦ H) k . The only nontrivial step in this calculation is
the one marked (∗), which is verified easily by inspection of the definitions in
Chapter 3.

6.4 Implementing catamorphisms by iteration

151 Implementing catamorphisms. Having defined a frame representa-
tion for inductively defined types, the next step is to figure out how to evaluate
catamorphisms such as sum = (|0 O +|) over it. The basic principle is simple.
The left hand side of a rewrite rule for Dodo generally consists of an operation

6.4. IMPLEMENTING CATAMORPHISMS BY ITERATION 113

composed with a frame. The right hand side consists of a transformed frame
which incorporates the action of the operation. Thus, the general form of a
rewrite rule for catamorphisms is

(|α|) ◦mu〈r , d ,G〉 = H , (6.12)

with H a frame. Our task is to figure out what H is.
By combining (6.4), (6.6) and (6.12) (twice!) we directly obtain a commu-

tative diagram from which we can read off the law which H must satisfy to fit
the above equation. As discussed in paragraph 145, for simplicity we consider
mu〈d , d ,G〉 rather than mu〈r , d ,G〉.

Sβ

Smu〈d,d,G〉

²²
SH

''

β
Goo

mu〈d,d,G〉

²²
H

tt

S(µS)
τ

,,

S(|α|)

²²

µS

τ∪

ll

(|α|)

²²
SA

α // A

H = (|α|) ◦mu〈d , d ,G〉 = α ◦ SH ◦G . (6.13)

Thus, when Dodo encounters (|α|) ◦ mu〈r , d ,G〉, it should replace it by r ∗ H ,
with H a frame satisfying H = α◦SH ◦G . In the rest of this section we examine
how Dodo obtains such H .

152 Example. Consider F ′ = mu〈d , d ,G〉 with d and G as in (6.5). This
F ′ is similar to the F in that equation, except that r = d . We know that
composing F ′ with the function sum = (|0 O +|) yields

H = sum ◦ F ′ =

β1 7→ 0,
β2 7→ 36,
β3 7→ 19,
β4 7→ 0

,

and indeed

sum ◦ SH ◦G = (|0 O +|) ◦ S

β1 7→ 0,
β2 7→ 36,
β3 7→ 19,
β4 7→ 0

◦

β1 7→ inl †,
β2 7→ inr (17, β3),
β3 7→ inr (19, β4),
β4 7→ inl †

114 CHAPTER 6. INDUCTIVELY DEFINED TYPES

= (|0 O +|) ◦

β1 7→ inl †,
β2 7→ inr (17, 19),
β3 7→ inr (19, 0),
β4 7→ inl †

=

β1 7→ 0,
β2 7→ 17 + 19,
β3 7→ 19 + 0,
β4 7→ 0

= H .

153 Our approach, informally. The problem in determining H is that
the result for certain keys, such as β2 in the above example, depends on the
result for other keys. This is inherent to the structure of the mu〈〉 frame,
in which nodes refer to other nodes. To deal with this, we compute H in
stages. We extend the the range type of H with a special value, bottom, which
means “not yet known.” Then, we repeatedly evaluate a modified version of
equation (6.13), until for every key, the value has become known. An important
property of this iteration is that it works in parallel over all nodes in the frame.
In the first iteration, the catamorphism is evaluated for every subtree of depth 0,
e.g., every leaf. The next iteration deals with subtrees of depth 1, which can
now be processed because the partial result at their children is now known. The
iteration goes on until every node is “known.”

To extend the domain of H with the value “unknown,” we use the bottom
functor ⊥X . If H : β → A, the frames for the partial results have type β → ⊥A.
This requires some modifications to Equation (6.13). If we substitute Ĥ : β →
⊥A into (6.13), we obtain SĤ ◦G : β → S(⊥A). However, α expects arguments
of type SA. The solution we choose is similar to our solution to flattening λ-
terms in Section 2.5.3: we introduce a family of operators ES : S(⊥A)→ ⊥(SA)
which returns “known” values only if all ⊥A within the S are known. For a
tuple type, for instance, this means that all constituents are known. Using ES,
we can protect α from working on arguments which are not yet known:

Ĥj+1 = ⊥α ◦ ES ◦ SĤj ◦G . (6.14)

154 The bottom type. The most straightforward implementation of ⊥X
is of course ⊥X = 1+X . Then, we denote unknown values with inl † and known
values with inr x . In Dodo, however, we prefer to create a special ⊥ type with
constructors nothing : 1 → ⊥X and just : X → ⊥X . This type can then
be implemented with the specific rewrite scheme for catamorphisms in mind,
keeping the point-free expressions more readable, and the frame representation
less verbose and possibly more efficient.

Here is the frame representation of the bottom type: bottom types are rep-
resented using a frame bot〈d ,F 〉, where d is the domain of the whole frame, and
the domain of F is restricted to the keys of the known values. As a consequence,
if all values are unknown, dom F = ∅, and if all values are known, dom F = d .

6.4. IMPLEMENTING CATAMORPHISMS BY ITERATION 115

The interpretation of the bot〈〉-frame is given by

bot〈d ,F 〉 k = nothing †, if k /∈ domF

bot〈d ,F 〉 k = just (F k), if k ∈ domF

The standard frame operations on it are

dom bot〈d ,F 〉 = d ,

r ∗ bot〈d ,F 〉 = bot〈twin(r ∗ d), r ∗ F 〉,

bot〈d1,F1〉 t bot〈d2,F2〉, = bot〈d1 ∪ d2,F1 t F2〉.

One can think of many different internal representations for the ⊥ type. This
is just one of them. The choice depends only on what is most convenient when
processing iteration at the column level, see paragraph 162.

155 The extraction functions ES. The definition of ES : S⊥X → ⊥SX
for arbitrary functor S is that for every appropriately typed x and y ,

ES x = just y ⇐⇒ x = S just y . (6.15)

It follows from this definition that ES x = nothing † for those x which are not
of the form x = S just y . For example, if S X = X ×X , then

ES (just 1, just 2) = just (1, 2),

ES (just 1,nothing †) = nothing † .

Notice that ES can be regarded as the dual of DS. The distribution function
DS : A × SB → S(A × B) distributes the product (A×) into S, where ES :
S(1 + B)→ 1 + SB extracts the sum (1+) out of S.

156 Theorem (catamorphism iteration). Let S be a signature functor,
α : SA → A, and mu〈d , d ,G〉 : β → µS a fixpoint frame with G : β → Sβ.
Define the sequence of frames {Ĥj }j as

Ĥ0 k = nothing †,

Ĥi+1 k = (⊥α ◦ ES ◦ SĤi ◦G) k .
(6.16)

If there exist H and j such that Ĥj is of the form Ĥj = just ◦H , then H satisfies
H = α ◦ SH ◦G , and thus H = (|α|) ◦mu〈d , d ,G〉.

116 CHAPTER 6. INDUCTIVELY DEFINED TYPES

Proof We begin with showing that the sequence {Ĥj}j is monotonous, that
is, that

Ĥj k = just x =⇒ Ĥj+1 k = just x , (Pj)

for all j . We call this monotonous because whenever a value becomes known,
it remains unchanged afterwards. The proof is by induction to j . First notice
that (P0) holds trivially because Ĥ0 k = nothing † for every k . Then, assuming
(Pj−1) holds, we find

Ĥj k = just x1

≡ { expand Ĥj according to (6.16) }

(⊥α ◦ ES ◦ SĤj−1 ◦G) k = just x1

≡ { There exists x2 such that x1 = α x2 }

(ES ◦ SĤj−1 ◦G) k = just x2

≡ { Eq. (6.15): ES x = just y ⇐⇒ x = S just y . }

(SĤj−1 ◦G) k = S just x2

=⇒ { Property (Pj−1) }

(SĤj ◦G) k = S just x2

≡ { Eq. (6.15): ES x = just y ⇐⇒ x = S just y . }

(ES ◦ SĤj ◦G) k = just x2

≡ { x1 = α x2 }

(⊥α ◦ ES ◦ SĤj ◦G) k = just x1

≡ { recognize as Ĥj+1 }

Ĥj+1 k = just x1

Thus, (Pj−1) implies (Pj) and therefore (Pj) holds for every j . We conclude
that once the value for a particular key k becomes known, it does not change
in later iterations.

It follows immediately that if Ĥj can be written as Ĥj = just ◦ H for cer-

tain H , then also Ĥj+1 = just ◦ H . Moreover,

just ◦ H
=

Ĥj+1
=
⊥α ◦ ES ◦ SĤj ◦G

=
⊥α ◦ ES ◦ Sjust ◦ SH ◦G

= { Definition of ES }

6.4. IMPLEMENTING CATAMORPHISMS BY ITERATION 117

⊥α ◦ just ◦ SH ◦G
=

just ◦ α ◦ SH ◦G

and thus H = α ◦ SH ◦G , which proves the theorem. ¤

157 Convergence. The above theorem guarantees that iteration (6.16)
converges, because all frames Ĥj : β → ⊥A have the same finite domain β and
for every key, the value changes at most once, from nothing to just . Therefore,
the number of iterations is bound by the number of keys in the frame. Usually,
the number of iterations is related to the depth of the nesting in the data
structure.

The theorem does not exclude the possibility that the iteration converges
to a state where not all nodes are known. This happens, for instance, if G
in mu〈d , d ,G〉 has cyclic references between nodes. In such cases, the com-
putation of (|α|) simply does not terminate for those nodes. Dodo cannot be
expected to compute answers to nonterminating queries, so the most straight-
forward response is to simply abort query evaluation whenever unknown values
remain after iteration. This can be refined by only aborting execution when the
unknown values are actually needed. Recall that, to evaluate (|α|)◦mu〈r , d ,G〉,
we compute H = (|α|) ◦mu〈d , d ,G〉. We do not need all values of H to become
known, only those referenced by r . Therefore, after iteration has terminated, it
is sufficient to check whether r ∗ Ĥj has the form r ∗ Ĥj = just ◦ H and then
use H as the replacement for (|α|) ◦mu〈r , d ,G〉. In fact, this condition may be
used to terminate iteration early even in non-cyclic cases.

158 Example: sum. Consider again the frame F of equation (6.5). To
calculate sum◦F = (|0O+|)◦F , we have to solve H = α◦SH ◦G . In paragraph 152
we demonstrated that this indeed yields the correct result. Based on the type
β → ⊥Z, we infer that the Ĥj is of the form bot〈dj , atom〈hj 〉〉. Likewise,
using abbreviated notation, G is of the form e〈a〈e〉, p〈a〈f 〉, a〈s〉〉〉 for certain
columns e, f and s. Thus, most elements in the equation Ĥj+1 = ⊥α ◦ SĤj ◦G
are now known. Adding ES for SX = 1 + Z×X , we obtain the following:

α = 0 O (+)

Ĥj = bot〈dj , a〈hj 〉〉

G = e〈a〈e〉, p〈a〈f 〉, a〈s〉〉〉

ES ◦ e〈a〈x 〉, p〈a〈y〉, bot〈z ,Z 〉〉〉 = bot〈x ∪ z , e〈a〈x 〉, p〈dom Z ∗ a〈y〉,Z 〉〉〉

Now we substitute these into Ĥj+1 = ⊥α ◦ SĤj ◦G step by step:

118 CHAPTER 6. INDUCTIVELY DEFINED TYPES

G = e〈a〈e〉, p〈a〈f 〉, a〈s〉〉〉

=⇒ { Prepend SĤj , calculate effect on frame expression }

SĤj ◦G = e〈a〈 e
︸︷︷︸

x

〉, p〈a〈 f
︸︷︷︸

y

〉, bot〈twin(s ∗ dj)
︸ ︷︷ ︸

z

, a〈s ∗ hj 〉
︸ ︷︷ ︸

Z

〉〉〉

=⇒ { Plug x , y , z and Z as above into definition of ES }

ES ◦ SĤj ◦G = bot〈e ∪ twin(s ∗ dj),

e〈a〈e〉, p〈a〈twin(s ∗ hh) ∗ f 〉, a〈s ∗ hj 〉〉〉〉

=⇒ ⊥α ◦ ES ◦ SĤj ◦G = bot〈e ∪ twin(s ∗ dj),

a〈settail(e, 0) ∪ op+(twin(s ∗ hh) ∗ f , s ∗ hj)〉〉

=⇒ { Recognize Ĥj+1 }

Ĥj+1 = bot〈dj+1, a〈hj+1〉〉 = bot〈e ∪ twin(s ∗ dj),

a〈settail(e, 0) ∪ op+(twin(s ∗ hh) ∗ f , s ∗ hj)〉〉,

Both forms of Ĥj+1 are of the form bot〈. . . , a〈. . .〉〉. Thus, we conclude that at
the column level,

Ĥj = bot〈dj , a〈hj 〉〉,

dj+1 = e ∪ twin(s ∗ dj),

hj+1 = settail(e, 0) ∪ op+(twin(s ∗ hh) ∗ f , s ∗ hj).

Determining the initial values is easy: we need dom Ĥj = domF , therefore
d0 = d . Similarly, because initially every value is unknown, dom a〈h0〉 = ∅,
thus h0 = ∅. The iteration stops when Ĥj = just H for certain H and j ,
i.e., when dom a〈hj 〉 = dom bot〈dj , a〈hj 〉〉, meaning twin(hj) = dj .

Performing this iteration, we find

dj

β1 β1

β2 β2

β3 β3

β4 β4

h0 h1

β1 0
β4 0

h2

β1 0
β4 0
β3 19 + 0

h3

β1 0
β4 0
β3 19 + 0
β2 17 + 19

Notice that in fact, dj = d for every j . This is easy to derive automatically

from the calculation above, but follows directly from dom Ĥj+1 = dom Ĥj .

6.5 Implementing iteration in the column layer

159 Adding iteration to Dodo. In the previous section we discussed
how catamorphisms can be implemented as a repeated frame transformation.

6.5. IMPLEMENTING ITERATION IN THE COLUMN LAYER 119

We have not yet discussed how this can be implemented concretely at the col-
umn level. Dodo as described in Chapter 2, without inductive types, is rather
straightforward to implement. Simply begin with a query and transform it to
point-free form. Then gradually transform the point-free query into a large
frame expression representing the query result. Take the column expressions
out of the frame and evaluate them, possibly after eliminating commons subex-
pressions. Finally, in cooperation with the application on top of Dodo, turn the
frame expression into a nested return value (“interpretation function”).

When inductively defined types are added, we have to fit iteration into this
scheme. In the following paragraphs we briefly describe two possible approaches.

160 Approach 1: heavy-weight rewrite rule. In the first approach,
the iteration is implemented inside a huge rewrite rule, which, when encoun-
tering (|α|) ◦ mu〈r , d ,G〉, basically constructs a series of new queries of the
form ⊥α ◦ES ◦ SĤ ◦G and evaluates them in another Dodo instance. Once the
iteration stabilizes, the rewrite rule replaces (|α|) ◦mu〈r , d ,G〉 by the result of
the iteration. The benefit of this approach is that it requires very little change
in the rest of Dodo. It is simply a rewrite rule which takes a subquery f ◦F and
replaces it by an equivalent frame F ′. On the other hand, repeatedly invoking
other Dodo instances makes this rewrite rule very expensive. It also does not fit
well with the white-box approach behind Dodo, because there now is a whole
mechanism locked up within a single component, a single rewrite rule. In a lay-
ered design, query rewriting and query execution should generally not be mixed
in such a way. Especially, query evaluation should not be hidden in a rewrite
rule.

161 Approach 2: an iteration frame. The second approach we describe
here is to make the column execution layer aware of the notion of iteration. We
need to introduce a new language construct which implements iteration some-
where at the boundary of the frame sublanguage and the column sublanguage.
Then, the rewrite rule for (|α|) ◦ F can generate an iteration expression and the
execution engine can perform the iteration, separating the tasks of the layers.

In contrast with the rest of this chapter, where for many problems there was
a “canonical solution,” the implementation we give here is just one of many
possible implementations. Many variations are possible, some of which might
benefit from changes to the implementation of the bot〈〉 frame. This is one of the
reasons we introduced bot〈〉 as a functor with a custom frame representation.

The most important property of the column-level iteration construct pro-
posed here, is that to the rest of Dodo, it looks like a frame. It is written iter〈〉,
has dom and t operations, etc. Only the execution engine treats it specially.
During execution, normal frames are traversed and copied as-is, replacing col-

120 CHAPTER 6. INDUCTIVELY DEFINED TYPES

umn expressions by corresponding result columns. However, iter〈〉 frames are
not simply copied, they are iterated and replaced by the result of the iteration.

162 Iteration construct. Our iteration construct has the following struc-
ture:

iter〈 result : α→ A,

domain : [α 7↔7 !]

template : β → ⊥A,

initial : β → ⊥A,

step : β → ⊥A,

condition : [β 7↔7 !]

〉 : α→ A

Interpretation function: the meaning of iter〈res, dom, templ , init , step, cond〉 k
is res k , with template variables in res determined by the final iteration of the
following process: the first iteration executes init and assigns the results to the
corresponding names found in templ . Subsequent iterations execute step with
the template variables as bound by the previous iteration. After execution, the
template variables are rebound according to templ . Iteration stops when the
column expression cond no longer changes.

163 Example. With the sum iteration as given in paragraph 158, the
iteration frame for

(|O(+)|) ◦mu〈d , d , e〈a〈e〉, p〈a〈f 〉, a〈s〉〉〉〉

would be

iter〈 result = atom〈h∗〉,

domain = d ,

template = bot〈d∗, atom〈h∗〉〉,

initial = bot〈d , atom < emptycol()〉 >,

step = bot〈 e ∪ twin(s ∗ d∗),
atom〈settail(e, 0) ∪ op+(twin(s ∗ h∗) ∗ f , s ∗ h∗)〉〉,

condition = h∗,

〉 : α→ A

By pattern matching against template, the execution engine can extract d ∗ and
h∗ from initial and step. Matching against initial , this yields

d0 = d∗ = d ,

6.5. IMPLEMENTING ITERATION IN THE COLUMN LAYER 121

h0 = h∗ = emptycol().

Against step, it yields

dj+1 = d∗ = e ∪ twin(s ∗ dj),

hj+1 = h∗ = settail(e, 0) ∪ op+(twin(s ∗ h∗) ∗ f , s ∗ h∗).

164 Frame properties of iteration construct. Except for execution,
iteration frames behave as normal frames:

f ◦ iter〈R, d ,T , I ,S , c〉 = iter〈f ◦ R, twin(r ∗ d),T , I ,S , c〉,

dom iter〈R, d ,T , I ,S , c〉 = d , (this we needed d for)

r ∗ iter〈R, d ,T , I ,S , c〉 = iter〈r ∗ R, twin(r ∗ d),T , I ,S , c〉,

iter〈R, d ,T , I ,S , c〉 t F = iter〈R t F , d ,T , I ,S , c〉,

F t iter〈R, d ,T , I ,S , c〉 = iter〈F t R, d ,T , I ,S , c〉.

In the (r∗), (f ◦) and (Ft) rules we see that everything which happens after
the iteration is simply incorporated into the result component. Queries which
perform multiple iterations sequentially, e.g., (|α|)◦foo◦(|β|) lead to nesting in the
result component. Such nesting indeed means that first the outer iter〈〉 frame
is evaluated, and then the results are pasted into template variables of the inner
iter〈〉 frame. On the other hand, nested catamorphisms, e.g., (|f (|α|)|), lead to
nesting in the step component, which leads to nested execution of iter〈〉 frames:
Every iteration of the outer frame involves a complete execution of the inner
frame.

165 Problem: internal types. Theorem 156 states that the equation
H = α ◦ SH ◦G can be solved by computing the sequence of frames

Ĥj+1 = (⊥α ◦ ES ◦ SĤj ◦G). (∗)

Assuming a frame representation for Ĥj involving columns h1
j , . . ., hn

j , expansion

of (⊥α ◦ES ◦ SĤj ◦G) under the Dodo rules yields a frame for Ĥj+1 containing
column expressions f 1

j+1(h
1
j , . . . , hn

j), . . ., f n
j+1(h

1
j , . . . , hn

j). The idea is now,

that iteration (∗) can be performed by iterating the column expressions hk
j+1 =

f k
j+1(. . .).

Here, however, lies a problem. Many data types use internal key types, that
is, types not visible in their external semantics. For instance, the frame bag〈d , r ,F 〉 :
α → BagA internally uses a key type β such that r : [α−β] and F : β → A.

122 CHAPTER 6. INDUCTIVELY DEFINED TYPES

Rewrite rules often change the internal types used in such frames, for instance
through th mkprod() and mksum() operators (Section 3.2). Therefore, it is
possible that the type of fj+1() is incompatible with the type of hj , making it
impossible to perform the iteration

(h1, . . . , hn) 7→
(
f 1(. . .), f n(. . .)

)

without deriving new expression for the f k at every iteration. Obviously, this
is not a desirable situation.

To work around this, we introduce a new required frame operation,
canonical type. The function of canonical type is to “reset” all internal types
to a types for which the internal representation is known to be compatible. An
obvious choice would be subsets of integers. The canonical type operator can
then be applied to the initial and step members of the iter〈〉 frame, ensuring
that the types used in the column expressions will be compatible and can be
used for repeated evaluation.

6.6 Summary

In this chapter we have examined how general inductively defined types can
be stored in Dodo. This poses significant problems, because the Dodo system
as described in Chapters 2 and 3 assumes that the query is translated to a
fixed series of flattened column operators, independent of the actual data in the
database. When executing queries over recursive data, the number of items and
inter-item dependencies inherently depends on the data in the database, making
the fixed sequence of operations infeasible. As a solution, we introduce an
iteration construct in the column layer, where a given series of column operations
is iterated until a condition holds. This is sufficient to deal with the data-
dependence of the query evaluation process.

To compile queries over inductively defined types (catamorphisms) into such
iterations, we first derive from the categorical properties of the frame construct
a fixpoint equation which the result frame should satisfy. This equation is
transformed in an iteration scheme for frames, out of which a column level
iteration of column operators can be derived.

Adding inductively defined datatypes to Dodo is a fundamental addition.
Due to the breaking of the aforementioned assumption, it is not possible to add
inductive data types purely as a Dodo extension. Changes to the framework
itself are required. In particular, in the enhanced Dodo framework, extensions
are now also required to provide

6.6. SUMMARY 123

• for every new frame type f 〈〉, a canonical type operator (paragraph 165),

• and for every higher-order function Σ, an instance of EΣ (paragraph 155).

124 CHAPTER 6. INDUCTIVELY DEFINED TYPES

Chapter 7

Summary and future work

The theory developed in this thesis provides a method to improve the efficiency
of querying nested data.

166 Background. The roots of this research lie in the tension between data
model expressiveness and performance. Obviously, more expressive data models
are more convenient for application programmers. For many non-traditional
database applications, such as GIS, IR and multimedia applications, a more
expressive data model is desirable. Building an expressive system with good
performance turns out to be a hard problem. Common pitfalls are:

• Modern hardware requires simple and predictable memory access patterns
and predictable branches to perform well; query evaluation on complex
data models tends to result in the opposite.

• Complex data models are hard to understand for a query optimizer, mak-
ing it hard to transform the query into an effective execution plan.

• With extensible databases, the above problem gets worse. If a query
optimizer cannot “look inside” the extensions, it misses opportunities to
improve the query plan. Optimizations which cut across more than one
extension are even harder.

One promising solution is the extensible abstract datatype (E-ADT) ap-
proach, where the database consists of a framework into which E-ADTs are
plugged. E-ADTs extend the database with new functionality and operations,
and also offer an interface to the query optimizer. However, cross-extension
optimization is still hard, as is cross-extension code reuse, because E-ADTs

125

126 CHAPTER 7. SUMMARY AND FUTURE WORK

are built right on top of the storage manager and cannot access each others
functionality.

The multi-model database architecture, proposed by de Vries as a way to
enable cross-extension interaction, distinguishes several layers, each of which
offers another data model. Data is stored decomposed over simple bulk struc-
tures, and queries are gradually transformed down through the layers before
execution. The multi-model architecture follows the open implementation ap-
proach, where components (layers) in the system are not black boxes but offer
a meta-interface through which advise can be given in the choice of algorithms.
Thus, the system is extensible at every layer, and extensions at higher layers can
mix and match functionality provided at lower layers, even by other extensions.
This facilitates cross-extension optimization and code reuse.

167 Problems. In our work we encountered, and solved, several problems:

Generality The problem is to make the theory sufficiently general to apply to a
wide range of level data models and query languages.

We turned to category theory (Chapter 5) for inspiration. The categorical
theory of data types [BW90, MFP91, Fok92] is a general, expressive, but
concise language for reasoning about the properties of data types. Monads,
for instance, provide us with a flexible mechanism for implementing com-
prehensions. Moreover, we found a way to deal with inductively defined
types in general, executing recursive queries in bulk on the underlying
platform (Chapter 6).

Extensibility The problem is to build an extensible system in which the bound-
aries between independently developed extensions do not hinder global
optimization too much.

We applied the multi-model approach outlined in Section 1.3, thus fol-
lowing ideas put forward by Kiczales [KB96] and de Vries [dV99]. The
categorical data model of the upper layer provides generic ways to com-
bine existing data types. Alternatively, new type formers can be added
by defining them in terms of relational structures provided by extensions
on lower layers (Chapter 2 and 3). In our layered data model, we have
a flat binary relational model in the lower layers. The binary relational
model fits our function based nested model well, and is representative of
the array-like data structures often used as the physical data model in
efficient systems.

Bulk orientation The problem is to avoid the use of item-at-a-time processing,
even when the shape of the original query suggests a nested loop query
plan.

127

We introduced bulk orientation in queries over the nested data model,
which are typically item oriented, by expressing the query in point-free
form. This is again a categorical influence. Expressing the query in a form
which does not involve variables is a natural step up to bulk operations.
However, the elimination of nested scopes (Section 2.5.3) is not trivial.

Not only the query, also the data is expressed in a point-free style. Ex-
pressing both queries and data as compositions of functions allows us to
freely mix parts of the query with data. By repeatedly replacing opera-
tions on nested data by operations working on the flattened representation
of that data, the query is gradually rewritten to a form where it consists
only of bulk operators applied to flattened data.

The pattern of replacing item oriented nested loop style query plans by
bulk operations which evaluate many instances of an expression in parallel
is also clearly recognizable in other systems. Pathfinder (Chapter 4) is
an example of a system where a similar approach is applied with great
success to XQuery processing. We show that Pathfinder can accurately
be modelled as a Dodo extension plugged into the generic Dodo rewrite
rules.

168 Validation. Regarding validation of our theory we mention the follow-
ing:

Realization We have built a working prototype called Dodo (Chapter 3). In
addition to the theory put forward in Chapter 2, we had to define a suit-
able column algebra. At the type level, there is a natural “impedance
mismatch” between the function oriented upper layer and the relation ori-
ented lower layer. Our type system had to be carefully designed to take
this into account.

Applicability We have shown (Chapter 4) that the core ideas in Pathfinder are
instantiations of our more general theory (Chapter 2). This holds in par-
ticular for loop lifting. The staircase join is an example of an extension
which does not follow from our theory, but whose elaboration benefits
from the structure provided by the theory.

169 Future work. We are quite satisfied with the results obtained so far,
but realize that more work needs to be done in order to achieve a theory that
can be applied without surprise problems. This includes the following issues:

Validation A more detailed exploration of a Pathfinder like system based on
Dodo could provide insight in how close to a well performing system one
can get by straightforward application of the Dodo design pattern. In

128 CHAPTER 7. SUMMARY AND FUTURE WORK

particular, whether use of the renumbering operation r∗ on external node
identifiers defined in paragraph 113 is really needed, or whether it only
exists to satisfy Dodo’s formal rules and can be avoided in practice. This
could be characterized as “deeper validation.”

We are also interested in “broader validation,” applying Dodo to a wider
range on application domains, such as GIS and IR, and also other complex
data models. For the latter, one could think of an object-based data model,
array models [vBdVK03] or alternative data models for XML, such as
CDuce [BCF03].

Recursion The treatment of the flattening of recursive queries in Chapter 6
only scratches the surface of this topic. The appearance of an EΣ op-
erator which turns out to be dual to the distribution function DΣ used
in Section 2.5.3 suggests that the way we solve the fixpoint equation by
iteration is less ad-hoc than it may seem at first sight. Further study is
required here.

System building A Dodo extension consists of frame definitions, declarations
of operations, lots of rewrite rules, and generally also extensions at the
column level, in the form new primitive data types and column operations.
The Dodo framework specifies relations between all these elements, but in
practice, it may be hard for the extension writer to keep track it all. In
paragraph 90 we described several approaches for making this easier.

In a real-world system, managing extensions also requires a well-designed
module system. In the Dodo setting, this is particularly complicated be-
cause extensions can extend the system at every layer, and the layers
are each of a very different nature. On this topic, too, more research is
required.

Error handling In this thesis, we transform a query from nested to flat, evalu-
ate it, and transform the result back from flat to nested. An important
question not discussed here is what to do when run-time errors occur.
Generating understandable error messages is not a well understood topic
anyway, but the presence of loop lifted operators makes it even more com-
plex. It would be interesting to extend the theory of Dodo with means
to unflatten not only query results but also error messages, pinpointing
accurately which part of query and data caused the error.

Column algebra optimization For the sake of simplicity and generality, the Dodo
rewrite rules often emit redundant query plans, in the expectation that
subsequent phases eliminate common subexpressions and remove unnec-
essary column operations in a peep hole optimization phase. The Dodo

129

prototype contains several ad-hoc peep hole optimization rules to keep the
query plans readable and manageable, but there is much work to be done.
In Section 3.4 we sketched how better static analysis of column types could
benefit from this kind of optimization.

We look forward to seeing Dodo come alive.

130 CHAPTER 7. SUMMARY AND FUTURE WORK

Bibliography

[BCF03] V. Benzaken, G. Castagna, and A. Frisch, CDuce: An XML-
centric general-purpose language, Proceedings of the ACM Inter-
national Conference on Functional Programming, August 2003,
pp. 51–64.

[BCF+05] Scott Boag, Donald D. Chamberlin, Mary F. Fernández, Daniela
Florescu, Jonathan Robie, and Jérôme Siméon, XQuery 1.0: An
XML query language, World Wide Web Consortium, Candidate
Recommendation CR-xquery-20051103, November 2005.

[BDK92] François Bancilhon, Claude Delobel, and Paris C. Kanellakis
(eds.), Building an Object-Oriented Database System, The Story
of O2, Morgan Kaufmann, 1992.

[BdVBA01] Henk Ernst Blok, Arjen P. de Vries, Henk M. Blanken, and Pe-
ter M.G. Apers, Experiences with IR Top N Optimization in a
Main Memory DBMS: Applying ’The Database Approach’ in New
Domains, Proceedings of BNCOD 18, Advances in Databases
(Brian Read, ed.), Lecture Notes in Computer Science, vol. 2097,
Springer, jul 2001, pp. 126–151.

[BGvK+06] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and
J. Teubner, Fast and Scalable XQuery Processing Using A Purely
Relational Approach, ACM SIGMOD International Conference on
Management of Data, Chicago, USA, June 26-29, 2006, June 2006.

[BHC+01] Henk Ernst Blok, Djoerd Hiemstra, Sunil Choenni, Franciska
de Jong, Henk M. Blanken, and Peter M. G. Apers, Predicting
the cost-quality trade-off for information retrieval queries: Fa-
cilitating database design and query optimization., CIKM, ACM,
2001, pp. 207–214.

131

132 BIBLIOGRAPHY

[Bir87] R.S. Bird, An introduction to the theory of lists, Logic of Program-
ming and Calculi of Discrete Design (M. Broy, ed.), Springer,
1987, Also Technical Monograph PRG–56, Oxford University,
Computing Laboratory, Programming Research Group, October
1986, pp. 3–42.

[BK99] Peter A. Boncz and Martin L. Kersten, MIL Primitives for Query-
ing a Fragmented World, VLDB J. 8 (1999), no. 2, 101–119.

[BM96] R.S. Bird and O. de Moor, Algebra of programming, Prentice-Hall
International, 1996.

[Bon02] Peter A. Boncz, Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications, phdthesis, University of Amster-
dam, 2002.

[BQK96] P. A. Boncz, W. Quak, and M. L. Kersten, Monet and its Ge-
ographical Extensions: a Novel Approach to High-Performance
GIS Processing, Proceedings of the International Conference on
Extending Database Technology (EDBT) (Avignon, France), Lec-
ture Notes in Computer Science/Lecture Notes in Artificial Intel-
ligence (LNCS/LNAI), Springer-Verlag, vol. 1057, June 1996,
pp. 147–166.

[BW90] M. Barr and C. Wells, Category theory for computing science,
Prentice Hall, 1990.

[BWK98] P. A. Boncz, A. N. Wilschut, and M. L. Kersten, Flattening an
Object Algebra to Provide Performance, Proceedings of the IEEE
International Conference on Data Engineering (ICDE) (Orlando,
FL, USA), February 1998, pp. 568–577.

[BZN05] Peter A. Boncz, Marcin Zukowski, and Niels Nes, Mon-
etDB/X100: Hyper-pipelining query execution, CIDR, 2005,
pp. 225–237.

[CAB+81] Donald D. Chamberlin, Morton M. Astrahan, Mike W. Blasgen,
Jim Gray, W. Frank King III, Bruce G. Lindsay, Raymond A.
Lorie, James W. Mehl, Thomas G. Price, Gianfranco R. Putzolu,
Patricia G. Selinger, Mario Schkolnick, Donald R. Slutz, Irving L.
Traiger, Bradford W. Wade, and Robert A. Yost, A history and
evaluation of system r, Commun. ACM 24 (1981), no. 10, 632–
646.

BIBLIOGRAPHY 133

[CHS+95] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody,
R. Fagin, M. Flickner, A. W. Luniewski, W. Niblack, D. Petkovic,
J. Thomas, J. H. Williams, and E. L. Wimmers, Towards hetero-
geneous multimedia information systems: The garlic approach,
Research Issues in Data Engineering (RIDE ’95) (Los Alamitos,
Ca., USA), IEEE Computer Society Press, March 1995, pp. 124–
131.

[Clu98] Sophie Cluet, Designing OQL: Allowing objects to be queried, In-
formation Systems (1998), 279–305.

[Cod70] E. F. Codd, A relational model of data for large shared data banks,
Comm. ACM 13 (1970), no. 6, 377–387.

[dV99] A.P. de Vries, Content and multimedia database management sys-
tems, phdthesis, University of Twente, Enschede, The Nether-
lands, dec 1999.

[dVEK98] Arjen P. de Vries, Brian S. Eberman, and David E. Kovalcin, The
design and implementation of an infrastructure for multimedia
digital libraries, IDEAS, 1998, pp. 103–120.

[dVLB03] A.P. de Vries, J.A. List, and H.E. Blok, The Multi-model DBMS
Architecture and XML IR, Intelligent Search on XML Data (H.M.
Blanken, T. Grabs, H.-J. Schek, R. Schenkel, and G. Weikum,
eds.), LNCS, no. 2818, Springer-Verlag, 2003, pp. 179–191.

[dVvDBA99] Arjen P. de Vries, Mark G. L. M. van Doorn, Henk M. Blanken,
and Peter M. G. Apers, The Mirror MMDBMS Architecture,
VLDB’99, Proceedings of 25th International Conference on Very
Large Data Bases, September 7-10, 1999, Edinburgh, Scotland,
UK (Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez,
Stanley B. Zdonik, and Michael L. Brodie, eds.), Morgan Kauf-
mann, 1999, pp. 758–761.

[FMM+05] Mary F. Fernández, Ashok Malhotra, Jonathan Marsh, Marton
Nagy, and Norman Walsh, XQuery 1.0 and XPath 2.0 data model
(XDM), World Wide Web Consortium, Candidate Recommenda-
tion CR-xpath-datamodel-20051103, November 2005.

[Fok92] Maarten M. Fokkinga, Law and Order in Algorithmics, phdthesis,
University of Twente, 1992.

[Gru99] Torsten Grust, Comprehending Queries, phdthesis, University of
Konstanz, sep 1999.

134 BIBLIOGRAPHY

[Gru02] Torsten Grust, Accelerating xpath location steps, SIGMOD ’02:
Proceedings of the 2002 ACM SIGMOD international conference
on Management of data (New York, NY, USA), ACM Press, 2002,
pp. 109–120.

[GST04] Torsten Grust, Sherif Sakr, and Jens Teubner, XQuery on SQL
Hosts, Proceedings of the 30th Int’l Conference on Very Large
Databases (VLDB 2004) (Toronto, Canada), August 2004.

[GT04] Torsten Grust and Jens Teubner, Relational algebra: Mother
tongue—xquery: Fluent, Proceedings of the first Twente Data
Management Workshop on XML Databases, 2004.

[GvKT03] T. Grust, M. van Keulen, and J. Teubner, Staircase Join: Teach
a Relational DBMS to Watch its (Axis) Steps, Proceedings of
the 29th International Conference on Very Large Databases,
VLDB’2003, Berlin, Germany (J.-C. Freytag, P.C. Lockemann,
S. Abiteboul, M. Carey, P. Selinger, and A. Heuer, eds.), Morgan
Kaufmann Publishers, sep 2003, pp. 524–535.

[GvKT04] Torsten Grust, Maurice van Keulen, and Jens Teubner, Accelerat-
ing XPath Evaluation in Any RDBMS, Transactions on Database
Systems (TODS) 29 (2004), no. 1, 91–131.

[KB96] Gregor Kiczales and : Beyond the Black Box: Open Implementa-
tion. IEEE Software, Beyond the Black Box: Open Implementa-
tion, IEEE Software 13 (1996), no. 1, 8–11.

[MFP91] Erik Meijer, Maarten Fokkinga, and Ross Paterson, Functional
programming with bananas, lenses, envelopes and barbed wire,
Proceedings 5th ACM Conf. on Functional Programming Lan-
guages and Computer Architecture, FPCA’91, Cambridge, MA,
USA, 26–30 Aug 1991 (J. Hughes, ed.), vol. 523, Springer-Verlag,
Berlin, 1991, pp. 124–144.

[MGvKT04] S. Mayer, T. Grust, M. van Keulen, and J. Teubner, An Injection
with Tree Awareness: Adding Staircase Join to PostgreSQL, Pro-
ceedings of the 30th International Conference on Very Large Data
Bases, Toronto, Canada, August 31 - September 3 2004, Morgan
Kaufmann, August 2004, pp. 1305–1308.

[Pie02] Benjamin C. Pierce, Types and programming languages, MIT
Press, 2002.

BIBLIOGRAPHY 135

[PJ87] Simon L. Peyton Jones, The Implementation of Functional Pro-
gramming Languages, Prentice-Hall, 1987.

[PTM+05] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Mane-
gold, Jan Rittinger, and Jens Teubner, Pathfinder: XQuery –
The Relational Way, Proceedingsof the 31th Int’l Conference on
Very Large Databases (VLDB 2005) (Trondheim, Norway), Au-
gust 2005.

[PTS+05] Peter Boncz, Torsten Grust, Stefan Manegold, Jan Rittinger,
and Jens Teubner, Pathfinder: Relational XQuery Over Multi-
Gigabyte XML Inputs In Interactive Time, Tech. Report INS-
E0503, CWI, Amsterdam, March 2005.

[RFK04] Joeri van Ruth, Maarten Fokkinga, and Maurice van Keulen,
The Dodo Query Flattening System, techreport TR-CTIT-04-41,
Centre for Telematics and Information Technology, University of
Twente, The Netherlands, sep 2004.

[SABdB94] Hennie J. Steenhagen, Peter M. G. Apers, Henk M. Blanken,
and Rolf A. de By, From Nested-Loop to Join Queries in OODB,
VLDB’94, Proceedings of 20th International Conference on Very
Large Data Bases, September 12-15, 1994, Santiago de Chile,
Chile (Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, eds.),
Morgan Kaufmann, 1994, pp. 618–629.

[Ses98] Praveen Seshadri, PREDATOR: A resource for database research,
j-SIGMOD 27 (1998), no. 1, 16–20.

[Sto93] Michael Stonebraker, The SEQUOIA 2000 project, IEEE Data
Eng. Bull. 16 (1993), no. 1, 24–28.

[TK78] D. Tsichritzis and A. C. Klug, The ANSI/X3/SPARC DBMS
framework report of the study group on database management sys-
tems, Information Systems 3 (1978), no. 3, 173–191.

[Tur79] D.A. Turner, A new implementation technique for applicative lan-
guages., Softw., Pract. Exper. 9 (1979), no. 1, 31–49.

[vBdVK03] Alex R. van Ballegooij, Arjen P. de Vries, and Martin L. Kersten,
RAM: Array processing over a relational DBMS, techreport, CWI,
2003.

136 BIBLIOGRAPHY

[vKVdV+03] M. van Keulen, J. Vonk, A.P. de Vries, J. Flokstra, and H.E. Blok,
Moa and the multi-model architecture: a new perspective on NF2,
Proceedings of the 14th International Conference on Database
and Expert Systems Applications (DEXA2003), Prague, Czech
Republic (V. Marik, W. Retschitzegger, and O. Stepankova, eds.),
LNCS, no. 2736, Springer-Verlag, sep 2003, pp. 67–76.

[vR05] Joeri van Ruth, A general approach to query flattening, Proceed-
ings VLDB PhD workshop 2005 (Trondheim, Norway), August
2005.

Samenvatting

Het centrale thema van dit proefschrift is query flattening. Dit “platslaan”
van zoekopdrachten komt voort uit het spanningsveld tussen de behoefte aan
expressieve, geneste datastructuren aan de kant van de applicatieprogrammeur,
en de noodzaak van eenvoudige, ongeneste (platte) datastructuren voor efficiente
verwerking op moderne computerhardware. Gezien huidige ontwikkelingen op
het gebied van computerarchitectuur wordt namelijk steeds belangrijker om
gebruik te maken van bulkoperaties op simpele datastructuren.

In dit proefschrift ligt de nadruk op het verwerken van reken- en data-
intensieve queries en speelt het invoeren en bijwerken van gegevens (updates) een
ondergeschikte rol. Dit type queries komt veel voor bij bijvoorbeeld geografische
toepassingen (GIS), information retrieval (IR) en multimedia toepassingen.

Vanwege het grote volume van de data ligt het voor de hand om de gegevens
op te slaan in een database management system (DBMS). In het verleden is het
echter moeilijk gebleken om dit soort toepassingen te integreren met “klassieke”
relationele databasetechnologie. Het is vanwege de complexere structuur van de
gegevens vaak lastig en tijdrovend om met de hand de gegevens op te breken
in allerlei tabellen. Verder zijn bestaande databases vaak meer toegespitst op
administratieve toepassingen, met meestal relatief eenvoudige queries en veel
updates. Voor niet-traditionele toepassingen valt de performance daarom vaak
tegen.

Een veelgekozen oplossing is om de complexe gegevens dan maar in een apart
systeem naast de bestaande database op te slaan. Dit is geen bevredigende
oplossing omdat het dan moeilijk is om vragen te beantwoorden die betrekking
hebben op gegevens die over beide systemen verspreid opgeslagen liggen. Daar-
naast valt op dat in veel verschillende gespecialiseerde systemen, dezelfde tech-
nieken terugkomen voor het efficienter maken van query verwerking. Een be-
langrijk voorbeeld daarvan is query flattening. De achterliggende visie van het
onderzoek waar dit proefschrift deel van uitmaakt, is dan ook om te proberen
de bestaande databasetheorie zodanig uit te breiden dat het niet meer nodig is
om aparte systeem te bouwen voor complexe datastructuren.

137

138 SAMENVATTING

De basis van onze benadering is de zogenaamde Multi-model architectuur,
waarin de verwerking van queries plaatsvindt in een aantal lagen, en de query
stap voor stap wordt vertaald van complexe datastructuren in de bovenste laag
naar simpele, platte datastructuren in de onderste laag. Op zichzelf is het
idee van een meerlaags model niet nieuw. Het interessante aan de multi-model
architectuur is dat elke laag op zich uitbreidbaar is, waarbij een uitbreiding op
hogere niveaus toegang heeft tot alle functionaliteit op de lagere niveaus. Bij het
bouwen en verwerken van complexe structuren op het hoge niveau wordt dan
gebruik gemaakt van bestaande functionaliteit op het lage niveau, plus enkele
applicatie-specifieke uitbreidingen op het lage niveau.

Door de decompositie van complexe structuren in efficiente bulkstructuren
niet over te laten aan een generieke standaardmethode, maar in de handen
van de uitbreidingsprogrammeur te leggen, is het mogelijk gebleken om met
relationele databases zeer efficient complexe datastructuren te verwerken. Een
voorbeeld hiervan is te vinden in hoofdstuk 4 van dit proefschrift, waar we schet-
sen hoe de zeer efficiente MonetDB-XQuery database geneste XML structuren
afbeeldt op platte tabelstructuren, en hoe deze afbeelding opgevat kan worden
als een specialisatie van het in dit proefschrift beschreven Dodo query flattening
framework.

In dit proefschrift beschrijven we een algemeen framework voor het vertalen
van queries van een datamodel met geneste data types naar een datamodel met
alleen platte tabelstructuren. De achterliggende gedachte is, dat de data plat
opgeslagen ligt, maar dat queries geformuleerd kunnen worden in termen van
geneste data typen. Het Dodo framework schrijft in principe niet voor hoe com-
plexe structuren in tabelvorm moeten worden gebracht. Dat blijft een creatief
ontwerpproces waarbij Dodo slechts helpt de gedachten te bepalen. Wel geeft
Dodo een universele taal waarin het flattening proces kan worden uitgedrukt.
Bovendien geeft Dodo regels die helpen de correcte relatie te leggen tussen de
operaties op platte data “onderin” de database, en operatie op geneste data
“bovenin” de database.

Het centrale concept in Dodo is de zogenaamde punt-vrije vorm. Dat is een
notatie waarbij de query volledig wordt uitgedrukt zonder gebruik te maken van
variabelen. De eerste stap in het verwerken van een query is het omschrijven van
de query naar punt-vrije vorm. Dit gebeurt aan de hand van regels die specifiek
zijn voor de gebruikte query taal. Behalve query wordt ook de in de database
aanwezige data in een punt-vrije vorm genoteerd. Hoe dit gebeurt, is door de
uitbreidingsprogrammeur vastgelegd bij het definieren van de uitbreiding.

De uitbreidingsprogrammeur definieert operaties op genestte data in punt-
vrije vorm. Omdat er in punt-vrije vorm geen variabelen zijn, kunnen operaties
niet verwijzen naar individuele data elementen, en daarmee is de punt-vrije
vorm een geschikte eerste stap naar bulk orientatie: de definitie van een operatie

139

beschrijft hoe je de operatie uitvoert op een hele rij data elementen tegelijk.
Op het moment dat we zowel de query als de data in punt-vrije vorm hebben,

kunnen we ze met elkaar gaan mengen. De punt-vrije herschrijfregels trans-
formeren geneste operaties naar bulkoperaties op het platte niveau, die efficient
kunnen worden uitgevoerd door de onderliggende hardware. De bijdrage van
het Dodo-framework is dat de programmeur niet meer na hoeft te denken over
het elimineren van nesting uit de query. Het enige dat aan de programmeur
gevraagd wordt, is om voor elke operatie de concrete vraag te beantwoorden: hoe
voer je operatie uit op punt-vrij opgeslagen data, gebruikmakend van specifieke
kenmerken en algoritmen. Dit alles wordt nader uitgewerkt in Hoofdstukken 2
en 3.

De theorie zoals hierboven beschreven heeft een belangrijke beperking: hij is
beperkt tot datastructuren die genest zijn qua type, bijvoorbeeld verzamelingen
van tupels van polygonen die elk bestaan uit lijnstukken die opgebouwd zijn
uit punten. Veel data heeft echter ook een recursieve structuur waarvan de
diepte niet door het type wordt vastgelegd. Denk daarbij bijvoorbeeld aan
boomstructuren, waarbij elke node in de boom verwijzingen kan hebben naar
ander nodes.

In Hoofdstuk 6 onderzoeken we een manier om deze restrictie te verlichten.
We geven een mechanisme waarmee Dodo automatisch een serie platte oper-
aties kan afleiden voor een belangrijke klasse boom-operators, de catamorfis-
men. Veel bekende recursieve operaties, bijvoorbeeld de sum functie op lijsten,
kunnen worden uitgedrukt als een catamorfisme. Hoewel een door de uitbrei-
dingsprogrammeur geschreven implementatie over het algemeen efficienter zal
blijven, maken de door Dodo gegenereerde query plannen goed gebruik maken
van bulkoperaties op het platte niveau, vooral als de boomstructuren ondiep
maar breed zijn.

Het in dit proefschrift beschreven Dodo framework valideren we op verschil-
lende manieren. We kijken hoe queries vertaald worden door een prototype. We
demonstreren hoe de essentiele kenmerken van MonetDB-XQuery overeenkomen
met de kernpunten van de Dodo benadering. Tenslotte bouwen we onze benader-
ing op een krachtige theoretische basis, de categorische theorie van datatypen.

140 SAMENVATTING

SIKS Dissertation Series

[2005-01] Floor Verdenius (UVA), Methodological Aspects of Designing Induction-
Based Applications

[2005-02] Erik van der Werf (UM), AI techniques for the game of Go

[2005-03] Franc Grootjen (RUN), A Pragmatic Approach to the Conceptuali-
sation of Language

[2005-04] Nirvana Meratnia (UT), Towards Database Support for Moving Ob-
ject data

[2005-05] Gabriel Infante-Lopez (UVA), Two-Level Probabilistic Grammars
for Natural Language Parsing

[2005-06] Pieter Spronck (UM), Adaptive Game AI

[2005-07] Flavius Frasincar (TUE), Hypermedia Presentation Generation for
Semantic Web Information Systems

[2005-08] Richard Vdovjak (TUE), A Model-driven Approach for Building Dis-
tributed Ontology-based Web Applications

[2005-09] Jeen Broekstra (VU), Storage, Querying and Inferencing for Seman-
tic Web Languages

[2005-10] Anders Bouwer (UVA), Explaining Behaviour: Using Qualitative
Simulation in Interactive Learning Environments

[2005-11] Elth Ogston (VU), Agent Based Matchmaking and Clustering - A
Decentralized Approach to Search

[2005-12] Csaba Boer (EUR), Distributed Simulation in Industry

[2005-13] Fred Hamburg (UL), Een Computermodel voor het Ondersteunen
van Euthanasiebeslissingen

[2005-14] Borys Omelayenko (VU), Web-Service configuration on the Semantic
Web; Exploring how semantics meets pragmatics

141

142 SIKS DISSERTATION SERIES

[2005-15] Tibor Bosse (VU), Analysis of the Dynamics of Cognitive Processes

[2005-16] Joris Graaumans (UU), Usability of XML Query Languages

[2005-17] Boris Shishkov (TUD), Software Specification Based on Re-usable
Business Components

[2005-18] Danielle Sent (UU), Test-selection strategies for probabilistic net-
works

[2005-19] Michel van Dartel (UM), Situated Representation

[2005-20] Cristina Coteanu (UL), Cyber Consumer Law, State of the Art and
Perspectives

[2005-21] Wijnand Derks (UT), Improving Concurrency and Recovery in Database
Systems by Exploiting Application Semantics

[2006-01] Samuil Angelov (TUE), Foundations of B2B Electronic Contracting

[2006-02] Cristina Chisalita (VU), Contextual issues in the design and use of
information technology in organizations

[2006-03] Noor Christoph (UVA), The role of metacognitive skills in learning
to solve problems

[2006-04] Marta Sabou (VU), Building Web Service Ontologies

[2006-05] Cees Pierik (UU), Validation Techniques for Object-Oriented Proof
Outlines

[2006-06] Ziv Baida (VU), Software-aided Service Bundling - Intelligent Meth-
ods & Tools for Graphical Service Modeling

[2006-07] Marko Smiljanic (UT), XML schema matching – balancing efficiency
and effectiveness by means of clustering

[2006-08] Eelco Herder (UT), Forward, Back and Home Again - Analyzing
User Behavior on the Web

[2006-09] Mohamed Wahdan (UM), Automatic Formulation of the Auditor’s
Opinion

[2006-10] Ronny Siebes (VU), Semantic Routing in Peer-to-Peer Systems

